Jump to content

Gamma-ray Bursts: Harvesting Knowledge From the Universe’s Most Powerful Explosions


Recommended Posts

  • Publishers
Posted

7 min read

Gamma-ray Bursts: Harvesting Knowledge From the Universe’s Most Powerful Explosions

The most powerful events in the known universe – gamma-ray bursts (GRBs) – are short-lived outbursts of the highest-energy light. They can erupt with a quintillion (a 10 followed by 18 zeros) times the luminosity of our Sun. Now thought to announce the births of new black holes, they were discovered by accident.

Two neutron stars begin to merge in this artist’s concept, blasting jets of high-speed particles. Collision events like this one create short gamma-ray bursts. Credit: NASA’s Goddard Space Flight Center/ A. Simonnet, Sonoma State University
Two neutron stars begin to merge in this artist’s concept, blasting jets of high-speed particles. Collision events like this one create short gamma-ray bursts.
Credit: NASA’s Goddard Space Flight Center/ A. Simonnet, Sonoma State University

The backstory takes us to 1963, when the U.S. Air Force launched the Vela satellites to detect gamma rays from banned nuclear weapons tests. The United States had just signed a treaty with the United Kingdom and the Soviet Union to prohibit tests within Earth’s atmosphere, and the Vela satellites ensured all parties’ compliance. Instead, the satellites stumbled upon 16 gamma-ray events. By 1973, scientists could rule out that both Earth and the Sun were the sources of these brilliant eruptions. That’s when astronomers at Los Alamos National Laboratory published the first paper announcing these bursts originate beyond our solar system. Scientists at NASA’s Goddard Space Flight Center quickly confirmed the results through an X-ray detector on the IMP 6 satellite. It would take another two decades and contributions from the Italian Space Agency’s BeppoSax and NASA’s Compton Gamma-Ray Observatory to show that these outbursts occur far beyond our Milky Way galaxy, are evenly distributed across the sky, and are extraordinarily powerful. The closest GRB on record occurred more than 100 million light-years away.

Though discovered by chance, GRBs have proven invaluable for today’s researchers. These flashes of light are rich with insight on phenomena like the end of life of very massive stars or the formation of black holes in distant galaxies.

Still, there are plenty of scientific gems left to discover. In 2017, GRBs were first linked to gravitational waves – ripples in the fabric of space-time – steering us toward a better understanding of the how these events work.

The Long and Short of GRBs

Astronomers separate GRBs into two main classes: short (where the initial burst of gamma rays lasts less than two seconds) and long events (lasting two seconds or longer).

Shorter bursts also produce fewer gamma rays overall, which lead researchers to hypothesize that the two classes originated from different progenitor systems.

Astronomers now associate short bursts with the collision of either two neutron stars or a neutron star and a black hole, resulting in a black hole and a short-lived explosion. Short GRBs are sometimes followed by kilonovae, light produced by the radioactive decay of chemical elements. That decay generates even heavier elements, like gold, silver, and platinum.

Long bursts are linked to the explosive deaths of massive stars. When a high-mass star runs out of nuclear fuel, its core collapses and then rebounds, driving a shock wave outward through the star. Astronomers see this explosion as a supernova. The core may form a either a neutron star or a black hole.

In both classes, the newly born black hole beams jets in opposite directions. The jets, made of particles accelerated to near the speed of light, pierce through and eventually interact with the surrounding material, emitting gamma rays when they do.

As a high-mass star explodes in this artist’s concept, it produces a jet of high-energy particles. We see GRBs when such gets point almost directly at Earth.
As a high-mass star explodes in this artist’s concept, it produces a jet of high-energy particles. We see GRBs when such gets point almost directly at Earth.
Credit: NASA/Swift/Cruz deWilde

This broad outline isn’t the last word, though. The more GRBs astronomers study, the more likely they’ll encounter events that challenge current classifications.  

In August 2020, NASA’s Fermi Gamma-ray Space Telescope tracked down a second-long burst named GRB 200826A, over 6 billion light-years away. It should have fallen within the short-burst class, triggered by mergers of compact objects. However, other characteristics of this event – like the supernova it created – suggested it originated from the collapse of a massive star. Astronomers think this burst may have fizzled out before it could reach the duration typical of long bursts.

Fermi and NASA’s Neil Gehrels Swift Observatory captured its opposite number, GRB 211211A in December 2021. Located a billion light-years away, the burst lasted for about a minute. While this makes it a long GRB, it was followed by a kilonova, which suggests it was triggered by a merger. Some researchers attribute this burst’s oddities to a neutron star merging with a black hole partner.

As astronomers discover more bursts lasting several hours, there may still be a new class in the making: ultra-long GRBs. The energy created by the death of a high-mass star likely can’t sustain a burst for this long, so scientists must look to different origins.

Some think ultra-long bursts occur from newborn magnetars – neutron stars with rapid rotation rates and magnetic fields a thousand times stronger than average. Others say this new class calls for the power of the universe’s largest stellar residents, blue supergiants. Researchers continue to explore ultra-long GRBs.

Afterglows Shedding New Light

While gamma rays are the most energetic form of light, they certainly aren’t the easiest to spot. Our eyes see only a narrow band of the electromagnetic spectrum. Studying any light outside that range, like gamma rays, hinges tightly on the instruments our scientists and engineers develop. This need for technology, alongside GRBs’ already fleeting nature, made bursts more difficult to study in early years.

grb-wfc3ir-mstr-crop-final-circled-1080.
The Hubble Space Telescope’s Wide Field Camera 3 revealed the infrared afterglow (circled) of GRB 221009A and its host galaxy, seen nearly edge-on as a sliver of light extending to upper left from the burst.
Credit: NASA, ESA, CSA, STScI, A. Levan (Radboud University); Image Processing: Gladys Kober

GRB afterglows occur when material in the jets interact with surrounding gas.

Afterglows emit radio, infrared, optical, UV, X-ray, as well as gamma-ray light, which provides more data about the original burst. Afterglows also linger for hours to days (or even years) longer than their initial explosion, creating more opportunities for discovery.

Studying afterglows became key to deducing the driving forces behind different bursts. In long bursts, as the afterglow dims, scientists eventually see the source brighten again as the underlying supernova becomes detectable.

Although light is the universe’s fastest traveler, it can’t reach us instantaneously. By the time we detect a burst, millions to billions of years may have passed, allowing us to probe some of the early universe through distant afterglows.

Bursting With Discovery

Despite the expansive research conducted so far, our understanding of GRBs is far from complete. Each new discovery adds new facets to scientists’ gamma-ray burst models.

Fermi and Swift discovered one of these revolutionary events in 2022 with GRB 221009A, a burst so bright it temporarily blinded most space-based gamma-ray instruments. A GRB of this magnitude is predicted to occur once every 10,000 years, making it likely the highest-luminosity event witnessed by human civilization. Astronomers accordingly dubbed it the brightest of all time – or the BOAT.

This is one of the nearest long burst ever seen at the time of its discovery, offering scientists a closer look at the inner workings of not only GRBs, but also the structure of the Milky Way. By peering into the BOAT, they’ve discovered radio waves missing in other models and traced X-ray reflections to map out our galaxy’s hidden dust clouds.

NASA’s Neil Gehrels Swift Observatory detected X-rays from the initial flash of GRB 221009A for weeks as dust in our galaxy scattered the light back to us, shown here in arbitrary colors.
NASA’s Neil Gehrels Swift Observatory detected X-rays from the initial flash of GRB 221009A for weeks as dust in our galaxy scattered the light back to us, shown here in arbitrary colors.
Credit: NASA/Swift/A. Beardmore (University of Leicester)

GRBs also connect us to one of the universe’s most sought-after messengers. Gravitational waves are invisible distortions of space-time, born from cataclysmic events like neutron-star collisions. Think of space-time as the universe’s all-encompassing blanket, with gravitational waves as ripples wafting through the material.

In 2017, Fermi spotted the gamma-ray flash of a neutron-star merger just 1.7 seconds after gravitational waves were detected from the same source. After traveling 130 million light-years, the gravitational waves reached Earth narrowly before the gamma rays, proving gravitational waves travel at the speed of light.

Scientists had never detected light and gravitational waves’ joint journey all the way to Earth. These messengers combined paint a more vivid picture of merging neutron stars.

With continued research, our ever-evolving knowledge of GRBs could unravel the unseen fabric of our universe. But the actual burst is just the tip of the iceberg. An endless bounty of information looms just beneath the surface, ready for the harvest.

By Jenna Ahart

About the Author

NASA Universe Web Team

NASA Universe Web Team

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left to right, NASA Marshall engineers Carlos Diaz and John Luke Bili, U.S. Naval Research Laboratory mechanical engineer contractor Eloise Stump, and Marshall engineers Tomasz Liz, David Banks, and Elise Doan observe StarBurst in the cleanroom environment before it’s unboxed from its shipping container. The cleanroom environment at Marshall is designed to minimize contamination and protect the observatory’s sensitive instruments. Image Credit: NASA /Daniel Kocevski   StarBurst, a wide-field gamma ray observatory, arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4 for environmental testing and final instrument integration. The instrument is designed to detect the initial emission of short gamma-ray bursts, a key electromagnetic indicator of neutron star mergers.
      “Gamma-ray bursts are among the most powerful explosions in the universe, and they serve as cosmic beacons that help us understand extreme physics, including black hole formation and the behavior of matter under extreme conditions,” said Dr. Daniel Kocevski, principal investigator of the StarBurst mission at NASA Marshall.
      According to Kocevski, neutron star mergers are particularly exciting because they produce gamma-ray bursts and gravitational waves, meaning scientists can study these events using two different signals – light and ripples in space time.
      Starburst Principal Investigator Dr. Daniel Kocevski, left, and Integration and Test Engineer Elise Doan, right, pose with the StarBurst instrument after it was unboxed in the cleanroom environment at NASA Marshall. The Naval Research Lab transferred the instrument to NASA in early March.Image Credit: NASA/Davy Haynes The merging of neutron stars forges heavy elements such as gold and platinum, revealing the origins of some of Earth’s building blocks.
      “By studying these gamma-ray bursts and the neutron star mergers that produce them, we gain insights into fundamental physics, the origins of elements, and even the expansion of the universe,” Kocevski said. “Neutron star mergers and gamma-ray bursts are nature’s laboratories for testing our understanding of the cosmos.”
      StarBurst will undergo flight vibration and thermal vacuum testing at Marshall in the Sunspot Thermal Vacuum Testing Facility. These tests ensure it can survive the rigors of launch and harsh environment of space.
      Final instrument integration will happen in the Stray Light Facility, which is a specialized environment to help identify and reduce unwanted light in certain areas of the optical systems.
      The StarBurst Multimessenger Pioneer is a wide-field gamma-ray observatory designed to detect the initial emission of short gamma-ray bursts, important electromagnetic indicators of neutron star mergers. With an effective area over five times that of the Fermi Gamma-ray Burst Monitor and complete visibility of the unobscured sky, StarBurst will conduct sensitive observations. NASA/Daniel Kocevski StarBurst is a collaborative effort led by NASA’s Marshall Space Flight Center, with partnerships with the U.S. Naval Research Laboratory, the University of Alabama Huntsville, the Universities Space Research Association, and the UTIAS Space Flight Laboratory. StarBurst was selected for development as part of the NASA Astrophysics Pioneers program, which supports lower-cost, smaller hardware missions to conduct compelling astrophysics science.
      To learn more about StarBurst visit:
      https://science.nasa.gov/mission/starburst/
      Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By European Space Agency
      Help us uncover the secrets of the Sun! Our Solar Orbiter spacecraft has been watching the Sun since February 2020. With five years’ worth of data waiting to be explored, it’s time to dig in. The new ‘Solar Radio Burst Tracker’ Zooniverse project is ready for you.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4450-4451: Making the Most of a Monday
      NASA’s Mars rover Curiosity acquired this image of its brightly lit workspace and its right-front wheel in the shadows, perched on some tall rocks. The rover used its Right Front Hazcam (Front Hazard Avoidance Camera) to capture the image on sol 4449 — or Martian day 4,449 of the Mars Science Laboratory mission — Feb. 10, 2025, at 10:44:45 UTC. NASA/JPL-Caltech Earth planning date: Monday, Feb. 10, 2025
      Last Saturday around 20:00 Pacific Standard Time I saw a 22-degree halo encircling our mostly-full Moon and Mars; an entire planet hanging in the sky between our Moon and the atmospheric phenomenon. As I took in the view I wondered what our rover was doing at that moment… turns out the Sun had just risen over Gale crater and Curiosity was still asleep, waiting for her alarm to go off in about 2.5 hours for another full day of science. 
      She wouldn’t start the weekend’s drive until Monday morning about 1:30, while I was still asleep waiting for my alarm to sound at 5:15. The drive’s data arrived on Earth about 5:30, and told us we drove until our time-of-day limit for driving — stopping about 36 meters (about 118 feet) away from Friday’s location. Unfortunately, our right-front wheel was shown to be perched on some tall rocks and we couldn’t quantify the drop risk if we unstowed the arm. We decided to play it safe and keep the arm stowed instead.
      Today’s two-sol plan would normally be in “nominal” sols — meaning we’d get a full day of science and a drive on the second sol — but due to some DSN downtime on Earth we moved our drive to the first sol, therefore switching to “restricted” sols a bit earlier than usual after our last soliday. Even though we couldn’t plan contact science, we’re making the most of our plan with almost 90 minutes of remote sensing. Mastcam will take an approximately 24-frame stereo mosaic of Wilkerson butte to the north, and ChemCam will shoot their laser at a rock in our workspace named “Carbon Canyon,” as well as three separate RMI mosaics! We’ll then attempt to drive until our time-of-day limit of about 15:00 local Gale time, hopefully getting us to a more stable spot on Wednesday for contact science. The second sol contains our usual dust-devil surveys with Navcam, atmospheric opacity measurements with Mastcam, and a blind LIBS on a piece of bedrock the rover chooses autonomously.
      Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Share








      Details
      Last Updated Feb 11, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4447–4449: Looking Back at the Marker Band Valley


      Article


      1 day ago
      4 min read Sols 4445–4446: Cloudy Days are Here


      Article


      5 days ago
      2 min read Sols 4443-4444: Four Fours for February


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By USH
      A summer barbecue transformed into a nightmare when lightning split the sky above Somerset, England. Peter Williamson dashed across his rain-soaked lawn to rescue his terrified dog, unaware that his next step would carry him beyond the boundaries of our world. 
      His family watched in horror as a blinding flash illuminated his silhouette against the stormy sky. When their vision cleared, Peter had evaporated into thin air. 

      The police launched a search, but found no footprints, no scorch marks, and no explanation for how a man could disappear from a walled garden. Sixteen witnesses swore they watched him vanish in plain sight. 
      Three days passed before Peter materialized in his backyard, wearing unfamiliar clothes and carrying items that defied explanation. His memories painted a picture of a hospital that both existed and didn't exist, where reality shimmered like heat waves rising from summer pavement. 
      The investigation into his disappearance uncovered something extraordinary: evidence suggesting Peter had slipped through a crack between parallel universes. 
      A "crack between parallel universes" is a metaphorical concept in physics, often used to describe a hypothetical point or region where two separate parallel universes could potentially interact or intersect with each other, allowing for potential travel or communication between them. 
      If such a "crack" existed, it would likely demand extraordinarily extreme conditions, exactly the kind Peter Williamson encountered during his disappearance. 
      His impossible story forces us to question everything we think we know about the nature of reality.
        View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A massive hotspot — larger the Earth’s Lake Superior — can be seen just to the right of Io’s south pole in this annotated image taken by the JIRAM infrared imager aboard NASA’s Juno on Dec. 27, 2024, during the spacecraft’s flyby of the Jovian moon. NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM Even by the standards of Io, the most volcanic celestial body in the solar system, recent events observed on the Jovian moon are extreme.
      Scientists with NASA’s Juno mission have discovered a volcanic hot spot in the southern hemisphere of Jupiter’s moon Io. The hot spot is not only larger than Earth’s Lake Superior, but it also belches out eruptions six times the total energy of all the world’s power plants. The discovery of this massive feature comes courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency.
      “Juno had two really close flybys of Io during Juno’s extended mission,” said the mission’s principal investigator, Scott Bolton of the Southwest Research Institute in San Antonio. “And while each flyby provided data on the tormented moon that exceeded our expectations, the data from this latest — and more distant — flyby really blew our minds. This is the most powerful volcanic event ever recorded on the most volcanic world in our solar system — so that’s really saying something.”
      The source of Io’s torment: Jupiter. About the size of Earth’s Moon, Io is extremely close to the mammoth gas giant, and its elliptical orbit whips it around Jupiter once every 42.5 hours. As the distance varies, so does the planet’s gravitational pull, which leads to the moon being relentlessly squeezed. The result: immense energy from frictional heating that melts portions of Io’s interior, resulting in a seemingly endless series of lava plumes and ash venting into its atmosphere from the estimated 400 volcanoes that riddle its surface.
      Close Flybys
      Designed to capture the infrared light (which isn’t visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the gas giant’s weather layer, peering 30 to 45 miles (50 to 70 kilometers) below its cloud tops. But since NASA extended Juno’s mission, the team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto.
      Images of Io captured in 2024 by the JunoCam imager aboard NASA’s Juno show signif-icant and visible surface changes (indicated by the arrows) near the Jovian moon’s south pole. These changes occurred between the 66th and 68th perijove, or the point during Juno’s orbit when it is closest to Jupiter.Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Jason Perry During its extended mission, Juno’s trajectory passes by Io every other orbit, flying over the same part of the moon each time. Previously, the spacecraft made close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of its surface. The latest flyby took place on Dec. 27, 2024, bringing the spacecraft within about 46,200 miles (74,400 kilometers) of the moon, with the infrared instrument trained on Io’s southern hemisphere.
      Io Brings the Heat
      “JIRAM detected an event of extreme infrared radiance — a massive hot spot — in Io’s southern hemisphere so strong that it saturated our detector,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “However, we have evidence what we detected is actually a few closely spaced hot spots that emitted at the same time, suggestive of a subsurface vast magma chamber system. The data supports that this is the most intense volcanic eruption ever recorded on Io.”
      The JIRAM science team estimates the as-yet-unnamed feature spans 40,000 square miles (100,000 square kilometers). The previous record holder was Io’s Loki Patera, a lava lake of about 7,700 square miles (20,000 square kilometers). The total power value of the new hot spot’s radiance measured well above 80 trillion watts.
      Picture This
      The feature was also captured by the mission’s JunoCam visible light camera. The team compared JunoCam images from the two previous Io flybys with those the instrument collected on Dec. 27. And while these most recent images are of lower resolution since Juno was farther away, the relative changes in surface coloring around the newly discovered hot spot were clear. Such changes in Io’s surface are known in the planetary science community to be associated with hot spots and volcanic activity.
      An eruption of this magnitude is likely to leave long-lived signatures. Other large eruptions on Io have created varied features, such as pyroclastic deposits (composed rock fragments spewed out by a volcano), small lava flows that may be fed by fissures, and volcanic-plume deposits rich in sulfur and sulfur dioxide.
      Juno will use an upcoming, more distant flyby of Io on March 3 to look at the hot spot again and search for changes in the landscape. Earth-based observations of this region of the moon may also be possible.  
      “While it is always great to witness events that rewrite the record books, this new hot spot can potentially do much more,” said Bolton. “The intriguing feature could improve our understanding of volcanism not only on Io but on other worlds as well.”
      More About Juno
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
      More information about Juno is available at:
      https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2025-010      
      Share
      Details
      Last Updated Jan 28, 2025 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons The Solar System Explore More
      4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 4 days ago 5 min read NASA JPL Prepping for Full Year of Launches, Mission Milestones
      Article 5 days ago 5 min read Study Finds Earth’s Small Asteroid Visitor Likely Chunk of Moon Rock
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...