Jump to content

The Universe is Expanding Faster These Days and Dark Energy is Responsible. So What is Dark Energy?


Recommended Posts

  • Publishers
Posted

11 min read

The Universe is Expanding Faster These Days and Dark Energy is Responsible. So What is Dark Energy?

Some 13.8 billion years ago, the universe began with a rapid expansion we call the big bang. After this initial expansion, which lasted a fraction of a second, gravity started to slow the universe down. But the cosmos wouldn’t stay this way. Nine billion years after the universe began, its expansion started to speed up, driven by an unknown force that scientists have named dark energy.

But what exactly is dark energy?

The short answer is: We don’t know. But we do know that it exists, it’s making the universe expand at an accelerating rate, and approximately 68.3 to 70% of the universe is dark energy.

universe-history.png?w=2048
The history of the universe is outlined in this infographic.
NASA

A Brief History

It All Started With Cepheids

Dark energy wasn’t discovered until the late 1990s. But its origin in scientific study stretches all the way back to 1912 when American astronomer Henrietta Swan Leavitt made an important discovery using Cepheid variables, a class of stars whose brightness fluctuates with a regularity that depends on the star’s brightness.

All Cepheid stars with a certain period (a Cepheid’s period is the time it takes to go from bright, to dim, and bright again) have the same absolute magnitude, or luminosity – the amount of light they put out. Leavitt measured these stars and proved that there is a relationship between their regular period of brightness and luminosity. Leavitt’s findings made it possible for astronomers to use a star’s period and luminosity to measure the distances between us and Cepheid stars in far-off galaxies (and our own Milky Way).

Around this same time in history, astronomer Vesto Slipher observed spiral galaxies using his telescope’s spectrograph, a device that splits light into the colors that make it up, much like the way a prism splits light into a rainbow. He used the spectrograph, a relatively recent invention at the time, to see the different wavelengths of light coming from the galaxies in different spectral lines. With his observations, Silpher was the first astronomer to observe how quickly the galaxy was moving away from us, called redshift, in distant galaxies. These observations would prove to be critical for many future scientific breakthroughs, including the discovery of dark energy.

Redshift is a term used when astronomical objects are moving away from us and the light coming from those objects stretches out. Light behaves like a wave, and red light has the longest wavelength. So, the light coming from objects moving away from us has a longer wavelength, stretching to the “red end” of the electromagnetic.

Discovering an Expanding Universe

The discovery of galactic redshift, the period-luminosity relation of Cepheid variables, and a newfound ability to gauge a star or galaxy’s distance eventually played a role in astronomers observing that galaxies were getting farther away from us over time, which showed how the universe was expanding. In the years that followed, different scientists around the world started to put the pieces of an expanding universe together.

In 1922, Russian scientist and mathematician Alexander Friedmann published a paper detailing multiple possibilities for the history of the universe. The paper, which was based on Albert Einstein’s theory of general relativity published in 1917, included the possibility that the universe is expanding.

In 1927, Belgian astronomer Georges Lemaître, who is said to have been unaware of Friedmann’s work, published a paper also factoring in Einstein’s theory of general relativity. And, while Einstein stated in his theory that the universe was static, Lemaître showed how the equations in Einstein’s theory actually support the idea that the universe is not static but, in fact, is actually expanding.

Astronomer Edwin Hubble confirmed that the universe was expanding in 1929 using observations made by his associate, astronomer Milton Humason. Humason measured the redshift of spiral galaxies. Hubble and Humason then studied Cepheid stars in those galaxies, using the stars to determine the distance of their galaxies (or nebulae, as they called them). They compared the distances of these galaxies to their redshift and tracked how the farther away an object is, the bigger its redshift and the faster it is moving away from us. The pair found that objects like galaxies are moving away from Earth faster the farther away they are, at upwards of hundreds of thousands of miles per second – an observation now known as Hubble’s Law, or the Hubble- Lemaître law. The universe, they confirmed, is really expanding.

Abell 2744: Pandora's Cluster Revealed
This composite image features one of the most complicated and dramatic collisions between galaxy clusters ever seen. Known officially as Abell 2744, this system has been dubbed Pandora’s Cluster because of the wide variety of different structures found. Data from Chandra (red) show gas with temperatures of millions of degrees. In blue is a map showing the total mass concentration (mostly dark matter) based on data from the Hubble Space Telescope, the Very Large Telescope (VLT), and the Subaru telescope. Optical data from HST and VLT also show the constituent galaxies of the clusters. Astronomers think at least four galaxy clusters coming from a variety of directions are involved with this collision.

Expansion is Speeding Up, Supernovae Show

Scientists previously thought that the universe’s expansion would likely be slowed down by gravity over time, an expectation backed by Einstein’s theory of general relativity. But in 1998, everything changed when two different teams of astronomers observing far-off supernovae noticed that (at a certain redshift) the stellar explosions were dimmer than expected. These groups were led by astronomers Adam Riess, Saul Perlmutter, and Brian Schmidt. This trio won the 2011 Nobel Prize in Physics for this work.

While dim supernovae might not seem like a major find, these astronomers were looking at Type 1a supernovae, which are known to have a certain level of luminosity. So they knew that there must be another factor making these objects appear dimmer. Scientists can determine distance (and speed) using an objects’ brightness, and dimmer objects are typically farther away (though surrounding dust and other factors can cause an object to dim).

This led the scientists to conclude that these supernovae were just much farther away than they expected by looking at their redshifts.

Using the objects’ brightness, the researchers determined the distance of these supernovae. And using the spectrum, they were able to figure out the objects’ redshift and, therefore, how fast they were moving away from us. They found that the supernovae were not as close as expected, meaning they had traveled farther away from us faster than ancitipated. These observations led scientists to ultimately conclude that the universe itself must be expanding faster over time.

While other possible explanations for these observations have been explored, astronomers studying even more distant supernovae or other cosmic phenomena in more recent years continued to gather evidence and build support for the idea that the universe is expanding faster over time, a phenomenon now called cosmic acceleration. 

But, as scientists built up a case for cosmic acceleration, they also asked: Why? What could be driving the universe to stretch out faster over time?

Enter dark energy.

What Exactly is Dark Energy?

Right now, dark energy is just the name that astronomers gave to the mysterious “something” that is causing the universe to expand at an accelerated rate.

Dark energy has been described by some as having the effect of a negative pressure that is pushing space outward. However, we don’t know if dark energy has the effect of any type of force at all. There are many ideas floating around about what dark energy could possibly be. Here are four leading explanations for dark energy. Keep in mind that it’s possible it’s something else entirely.

Vacuum Energy:

Some scientists think that dark energy is a fundamental, ever-present background energy in space known as vacuum energy, which could be equal to the cosmological constant, a mathematical term in the equations of Einstein’s theory of general relativity. Originally, the constant existed to counterbalance gravity, resulting in a static universe. But when Hubble confirmed that the universe was actually expanding, Einstein removed the constant, calling it “my biggest blunder,” according to physicist George Gamow.

But when it was later discovered that the universe’s expansion was actually accelerating, some scientists suggested that there might actually be a non-zero value to the previously-discredited cosmological constant. They suggested that this additional force would be necessary to accelerate the expansion of the universe. This theorized that this mystery component could be attributed to something called “vacuum energy,” which is a theoretical background energy permeating all of space.

Space is never exactly empty. According to quantum field theory, there are virtual particles, or pairs of particles and antiparticles. It’s thought that these virtual particles cancel each other out almost as soon as they crop up in the universe, and that this act of popping in and out of existence could be made possible by “vacuum energy” that fills the cosmos and pushes space outward.

While this theory has been a popular topic of discussion, scientists investigating this option have calculated how much vacuum energy there should theoretically be in space. They showed that there should either be so much vacuum energy that, at the very beginning, the universe would have expanded outwards so quickly and with so much force that no stars or galaxies could have formed, or… there should be absolutely none. This means that the amount of vacuum energy in the cosmos must be much smaller than it is in these predictions. However, this discrepancy has yet to be solved and has even earned the moniker “the cosmological constant problem.”

Quintessence:

Some scientists think that dark energy could be a type of energy fluid or field that fills space, behaves in an opposite way to normal matter, and can vary in its amount and distribution throughout both time and space. This hypothesized version of dark energy has been nicknamed quintessence after the theoretical fifth element discussed by ancient Greek philosophers.

It’s even been suggested by some scientists that quintessence could be some combination of dark energy and dark matter, though the two are currently considered completely separate from one another. While the two are both major mysteries to scientists, dark matter is thought to make up about 85% of all matter in the universe.

Space Wrinkles:

Some scientists think that dark energy could be a sort of defect in the fabric of the universe itself; defects like cosmic strings, which are hypothetical one-dimensional “wrinkles” thought to have formed in the early universe. 

A Flaw in General Relativity:

Some scientists think that dark energy isn’t something physical that we can discover. Rather, they think there could be an issue with general relativity and Einstein’s theory of gravity and how it works on the scale of the observable universe. Within this explanation, scientists think that it’s possible to modify our understanding of gravity in a way that explains observations of the universe made without the need for dark energy. Einstein actually proposed such an idea in 1919 called unimodular gravity, a modified version of general relativity that scientists today think wouldn’t require dark energy to make sense of the universe.

The Future

Dark energy is one of the great mysteries of the universe. For decades, scientists have theorized about our expanding universe. Now, for the first time ever, we have tools powerful enough to put these theories to the test and really investigate the big question: “what is dark energy?”

NASA plays a critical role in the ESA (European Space Agency) mission Euclid (launched in 2023), which will make a 3D map of the universe to see how matter has been pulled apart by dark energy over time. This map will include observations of billions of galaxies found up to 10 billion light-years from Earth.

NASA’s Nancy Grace Roman Space Telescope, set to launch by May 2027, is designed to investigate dark energy, among many other science topics, and will also create a 3D dark matter map. Roman’s resolution will be as sharp as NASA’s Hubble Space Telescope’s, but with a field of view 100 times larger, allowing it to capture more expansive images of the universe. This will allow scientists to map how matter is structured and spread across the universe and explore how dark energy behaves and has changed over time. Roman will also conduct an additional survey to detect Type Ia supernovae

In addition to NASA’s missions and efforts, the Vera C. Rubin Observatory, supported by a large collaboration that includes the U.S. National Science Foundation, which is currently under construction in Chile, is also poised to support our growing understanding of dark energy. The ground-based observatory is expected to be operational in 2025.

The combined efforts of Euclid, Roman, and Rubin will usher in a new “golden age” of cosmology, in which scientists will collect more detailed information than ever about the great mysteries of dark energy.

Additionally, NASA’s James Webb Space Telescope (launched in 2021), the world’s most powerful and largest space telescope, aims to make contributions to several areas of research, and will contribute to studies of dark energy.

NASA’s SPHEREx (the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) mission, scheduled to launch no later than April 2025, aims to investigate the origins of the universe. Scientists expect that the data collected with SPHEREx, which will survey the entire sky in near-infrared light, including over 450 million galaxies, could help to further our understanding of dark energy.

NASA also supports a citizen science project called Dark Energy Explorers, which enables anyone in the world, even those who have no scientific training, to help in the search for dark energy answers.

*A brief note*

Lastly, to clarify, dark energy is not the same as dark matter. Their main similarity is that we don’t yet know what they are!

By Chelsea Gohd
NASA’s Jet Propulsion Laboratory

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      SPHEREx & PUNCH: Studying the Universe and Sun (NASA Mission Trailer)
    • By NASA
      Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, talks about NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission with Dr. Kate Calvin, the agency’s chief scientist.Credits: Courtesy of Stephanie Getty Name: Dr. Stephanie Getty
      Title: Director of the Solar System Exploration Division, Sciences and Exploration Directorate and Deputy Principal Investigator of the DAVINCI Mission
      Formal Job Classification: Planetary scientist
      Organization: Solar System Exploration Division, Sciences and Exploration Directorate (Code 690)
      Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, poses with a full-scale engineering unit of NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) descent sphere.Credits: Courtesy of Stephanie Getty What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      As the Director of the Solar System Exploration Division, I work from a place of management to support our division’s scientists. As the deputy principal investigator of the DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission, I work with the principal investigator to lead the team in implementing this mission to study the atmosphere of Venus.
      I love that I get to work from a place of advocacy in support of my truly excellent, talented colleagues. I get to think strategically to make the most of opportunities and do my best to overcome difficulties for the best possible future for our teams. It’s also a fun challenge that no two days are ever the same!
      Why did you become a planetary scientist?
      In school, I had a lot of interests and space was always one of them. I also loved reading, writing, math, biology, and chemistry. Being a planetary scientist touches on all of these.
      My dad inspired me become a scientist because he loved his telescope and photography including of celestial bodies. We watched Carl Sagan’s “Cosmos” often.
      I grew up in southeastern Florida, near Fort Lauderdale. I have a B.S. and Ph.D. in physics from the University of Florida.  
      How did you come to Goddard?
      “My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system,” said Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “It’s a priority to encourage effective and open communication.”Credits: Courtesy of Stephanie Getty I had a post-doctoral fellowship in the physics department at the University of Maryland, and a local connection and a suggestion from my advisor led me to Goddard in 2004.
      What is most important to you as director of the Solar System Exploration Division, Sciences and Exploration Directorate?
      My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system. It’s a priority to encourage effective and open communication. I really try to value the whole person, recognizing that each of us is three-dimensional, with full personal lives. The people create the culture that allows our scientists to thrive and explore.
      What are your goals as deputy principal investigator of the DAVINCI mission?
      DAVINCI’s goal is to fill long-standing gaps about Venus, including whether it looked more like Earth in the past. Our energetic team brings together science, engineering, technology, project management, and business acumen to build a multi-element spacecraft that will explore Venus above the clouds, and during an hour-long descent through the atmosphere into the searingly hot and high pressure deep layers of the atmosphere near the surface. We hope to launch in June 2029.
      What is your proudest accomplishment at Goddard?
      I am pleased and proud to be deputy principal investigator on a major mission proposal that now gets to fly. It is an enormous privilege to be entrusted as part of the leadership team to bring the first probe mission back to Venus in over four decades.
      What makes Goddard’s culture effective?
      Goddard’s culture is at its best when we collectively appreciate how each member of the organization works towards solving our problems. The scientists appreciate the hard, detailed work that the engineers do to make designs. The engineers and project managers are energized by the fundamental science questions that underlie everything we do. And we have brilliant support staff that keeps our team organized and focused.
      “Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder,” says Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.”Credits: Courtesy of Stephanie Getty What goes through your mind when you think about which fundamental science question to address and how?
      A lot of the research I have done, including my mission work, has been inspired by the question of how life originates, how life originated on Earth, and whether there are or have been other environments in the solar system that could have ever supported life. These questions are profound to any human being. My job allows me to work with incredibly talented teams to make scientific progress on these questions.
      It is really humbling.
      Who inspired you?
      My 10th grade English teacher encouraged us to connect with the natural world and to write down our experiences. Exploring the manifestations of nature connects with the way I approach my small piece of exploring the solar system. I really love the writing parts of my job, crafting the narrative around the science we do and why it is important.
      As a mentor, what is the most important lesson you give?
      A successful career should reflect both your passion and natural abilities. Know yourself. What feels rewarding to you is important. Learn how to be honest with yourself and let yourself be driven by curiosity.
      Our modern lives can be very noisy at work and at home. It can be hard to filter through what is and is not important. Leaving space to connect with the things that satisfy your curiosity can be one way to make the most of the interconnectivity and complexity of life.
      Curiosity not only connects us to the natural world, but also to each other. Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder.
      I’m looking out my window as we talk. When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.
      What are your hobbies?
      I love hiking with my kids. Walking through the woods puts me in the moment and clears my mind better than anything else. It gives my brain a chance to relax. Nature gives perspective, it reminds me that I am part of something bigger. Walking in the woods gives me a chance to pause, for example, to notice an interesting rock formation, or watch a spider spinning an impressive web, or spot a frog trying to camouflage itself in a pond, and doing this with my children is my favorite pastime. 
      Where is your favorite place in the world?
      Any campsite at dusk with a fire going and eating s’mores with my family.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) People of Goddard Planetary Science Division Science Mission Directorate The Solar System Explore More
      5 min read World Photo Day: Behind the Scenes with Goddard’s Documentary Photographers
      Article 18 mins ago 6 min read Jesse Walsh: Possibility at the Cutting Edge of Flight
      Article 18 mins ago 6 min read Margaret Dominguez Helps NASA Space Telescopes Open Their ‘Eyes’ to the Universe
      Article 18 mins ago View the full article
    • By NASA
      “People are excited and happy about working at Goddard,” said optics engineer Margaret Dominguez. “Most people are willing to put in the extra effort if needed. It makes work stimulating and exciting. Management really cares and the employees feel that too.”Credits: Courtesy of Margaret Dominguez Name: Margaret Dominguez
      Formal Job Classification: Optical engineer
      Organization: Code 551, Optics Branch, Instrument Systems and Technology Division, Engineering Directorate
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I build space telescopes. I am currently working on building one of the components for the Wide Field Instrument for the Roman Space Telescope. The component is called “Grism.” A grism is a combination of a grating and a prism.
      What is unique about your childhood?
      I went to high school in Tecamachalco in Puebla, Mexico, which is inland and south of Mexico City. My father raised pigs, chickens, rabbits, and cows. I am the oldest of four girls and two still live on the farm.
      Why did you become a physicist?
      I was always curious and had a lot of questions and thought that physics helped me answer some of these questions. I was good at math and loved it. When I told my dad I wanted to study physics, he said that I would be able to answer any question in the universe. He thought it was very cool.
      What is your educational background? How an internship help you come to Goddard?
      I went to the Universidad de las Americas Puebla college in Puebla and got an undergraduate degree in physics. I was very active in extracurricular activities and helped organize a physics conference. We invited Dr. Johnathan Gardner, a Goddard astronomer, who came to speak at the conference. Afterwards I spoke with him and he asked me if I was interested in doing an internship at NASA. I said I had not considered it and would be interested in applying. I applied that same spring of 2008 and got a summer internship in the Optics Branch, where I am still working today.
      My branch head at Goddard was a University of Arizona alumnus. He suggested that I apply to the University of Arizona for their excellent optics program. I did, and the university gave me a full fellowship for a master’s and a Ph.D. in optical sciences.
      In 2014, I began working full time at Goddard while completing my Ph.D. I graduated in May 2019.
      What makes Goddard special?
      Goddard has a university campus feel. It’s a place where you can work and also just hang out and socialize. Goddard has many clubs, a gym, cafeterias, and a health clinic.
      People are really nice here. They are often excited and happy about working at Goddard. Most people are willing to put in the extra effort if needed. It makes work stimulating and exciting. Management really cares and the employees feel that too.
      What are some of the major projects you have worked on?
      Early on, I did a little bit of work on Hubble and later on, NASA’s James Webb Space Telescope. Since 2014, I have exclusively been working on Roman. We are building the grism, a slitless spectrograph, which will measure galaxy redshifts to study dark energy.
      Presently we are building different grism prototypes. We work with outside vendors to build these prototypes. When we make a prototype, we test it for months. After, we use the results to build an improved prototype. We just finished making the third prototype. We are going to build a flight instrument of which the grism is a component.
      What is it like to work in the clean room?
      It’s exciting – it likely means I am working on flight hardware. However, because clean rooms must be kept at about 68 degrees Fahrenheit, it can feel chilly in there!
      Who are your mentors? What are the most important lessons they have taught you?
      Ray Ohl, the head of the Optics Branch, is a mentor to me. He is always encouraging me to get outside my comfort zone. He presents other opportunities to me so that I can grow and listens to my feedback.
      Cathy Marx, one of the Roman optical leads, is also a mentor to me. She created a support network for me and is a sounding board for troubleshooting any kind of work-related issues.
      What is your role a member of the Hispanic Advisory Committee (HACE)?
      I joined HACE in 2010 while I was an intern. It’s a great opportunity to network with other Hispanics and gives us a platform to celebrate specific events like Hispanic Heritage Month. I really enjoy participating in HACE’s events.
      What outreach do you do? Why is doing outreach so important to you?
      I do educational outreach to teach people about optics. I mainly collaborate with elementary and middle schools.
      I think we need more future engineers and scientists. I want to help recruit them. I specifically focus on recruiting minorities and Hispanics. I can make a special connection with women and Hispanics.
      Who is your science hero?
      It would probably be Marie Curie. She’s the first woman to win a Nobel Prize, and she is the only woman to win two Nobel Prizes and she had to overcome a lot of challenges to achieve that.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Disciplined. Organized. Diligent. Passionate. Curious. Family-oriented.
      Is there something surprising about your hobbies outside of work that people do not generally know?
      I am a certified Jazzercise instructor – I normally teach two to three times a week. I can even teach virtually if need be. It is an hour-long exercise class combining strength training and cardio through choreographed dancing. We also use weights and mats.  
      I also enjoy going for walks with my husband, James Corsetti, who is also an engineer in the Optics Branch.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 4 min read
      Sols 4445–4446: Cloudy Days are Here
      NASA’s Mars rover Curiosity acquired this image showing its left-front wheel and the large rock it ran into (visible at lower left); another rock blocked its right-front wheel (the wheel is visible at the right edge), so the rover paused its drive to await instructions from the mission team on Earth. Curiosity captured the image using its Front Hazard Avoidance Camera (Front Hazcam) on sol 4444, or Martian day 4,444 of the Mars Science Laboratory mission, on Feb. 5, 2025, at 08:38:01 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Feb. 5, 2025
      Overnight before planning today, Mars reached a solar longitude of 40 degrees. The solar longitude is how we like to measure where we are in a Mars year. Each year starts at 0 degrees and advances to 360 degrees at the end of the year. For those of us on the Environmental Science (ENV) team, 40 degrees is a special time as it marks the beginning of our annual Aphelion Cloud Belt (ACB) observation campaign. During this time of year, the northern polar ice cap is emerging into the sunlight, causing it to sublimate away and release water vapor into the atmosphere. At the same time, the atmosphere is generally colder, since Mars is near aphelion (its furthest distance from the Sun). 
      Together, these two factors mean that Mars’ atmosphere is a big fan of forming clouds during this part of the year. Gale is right near the southern edge of the ACB, so we’re starting to take more cloud movies to study how the ACB changes during the cloudy season. (Jezero Crater, home to Perseverance, is much closer to the heart of the ACB, so keep an eye on their Raw Images page over the next several months as well.
      The drive from Monday’s plan ended early, after just about 4 meters instead of the 38 meters that had been planned (about 13 feet vs. 125 feet). We initially thought this might have been because our left-front wheel ran into the side of a large rock (see the image above), but after we got our hands on the drive data, it turned out that the steering motor on the right front wheel indicated that a rock was in the way on that side too, so Curiosity stopped the drive to await further instruction from Earth. This is a well-understood issue, so we should be back on the road headed west today.
      The cold weather is still creating power challenges, so we had to carefully prioritize our activities today. Despite the drive fault, we received the good news that it was safe to unstow the arm, so we were able to pack in a full set of MAHLI, APXS, and DRT activities. Before that, though, we start as usual with some remote sensing activities, including ChemCam LIBS and Mastcam observations of “Beacon Hill” (some layered bedrock near the rover) and a ChemCam RMI mosaic of the upper portion of Texoli butte.
      After taking a 3½-hour nap to recharge our batteries, we get into the arm activities. These start off with some MAHLI images of the MAHLI and APXS calibration targets, then continue with MAHLI and APXS observations of “Zuma Canyon.” This is followed by DRT, APXS, and MAHLI activities of some bedrock in our workspace, “Bear Canyon.” Although we then take another short nap, we don’t yet stow the arm as we have a pair of lengthy post-sunset APXS integrations. The arm is finally stowed about an hour and a half before midnight.
      The second sol of this plan begins with some more remote sensing activities, starting with ChemCam LIBS on “Mission Point”. This is followed by a series of Mastcam images of “Crystal Lake” (polygonal fractures in the bedrock), “Stockton Flat” (fine lamination in the bedrock), “Mount Waterman,” and Mission Point. We then finish with some ENV activities, including a Mastcam tau and Navcam line-of-sight to measure dust in the atmosphere and a Navcam cloud movie. This plan ends with a (hopefully!) lengthy drive west and many hours asleep to recharge our batteries as much as possible before planning starts again on Friday. Of course, I would be remiss if I didn’t mention that REMS, RAD, and DAN continue to diligently monitor the environment throughout this plan.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4443-4444: Four Fours for February


      Article


      19 hours ago
      3 min read Persevering Through Science


      Article


      3 days ago
      3 min read Sols 4441-4442: Winter is Coming


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Video: 00:06:40 A group of volunteers is spending two months lying in bed—with their feet up and one shoulder always touching the mattress—even while eating, showering, and using the toilet. But why? This extreme bedrest study is helping scientists understand how space travel affects the human body and how to keep astronauts healthy on long missions.
      Microgravity causes muscle and bone loss, fluid shifts, and other physiological changes similar to those experienced by bedridden patients on Earth. By studying volunteers here on Earth, researchers can develop better countermeasures for astronauts and even improve treatments for medical conditions like osteoporosis.
      In this study, participants are divided into three groups: one stays in bed with no exercise, another cycles in bed to mimic astronaut workouts, and a third cycles while being spun in a centrifuge to simulate artificial gravity. Scientists hope artificial gravity could become a key tool in protecting astronauts during deep-space missions.
      View the full article
  • Check out these Videos

×
×
  • Create New...