Jump to content

What’s Made in a Thunderstorm and Faster Than Lightning? Gamma Rays!


NASA

Recommended Posts

  • Publishers

3 min read

What’s Made in a Thunderstorm and Faster Than Lightning? Gamma Rays!

A flash of lightning. A roll of thunder. These are normal stormy sights and sounds. But sometimes, up above the clouds, stranger things happen. Our Fermi Gamma-ray Space Telescope has spotted bursts of gamma rays – some of the highest-energy forms of light in the universe – coming from thunderstorms. Gamma rays are usually found coming from objects with crazy extreme physics like neutron stars and black holes. So why is Fermi seeing them come from thunderstorms?

This animated GIF shows clouds moving across a dusky sky. The clouds on the right side have a gray haze extending down to the bottom of the image, where there is rain. Flashes of lightning, stretching from the cloud to the ground, light up the screen periodically.
About a thousand times a day, thunderstorms fire off fleeting bursts of some of the highest-energy light naturally found on Earth. These events, called terrestrial gamma-ray flashes, last less than a millisecond and produce gamma rays with tens of millions of times the energy of visible light.
NASA’s Goddard Space Flight Center

Thunderstorms form when warm, damp air near the ground starts to rise and encounters colder air. As the warm air rises, moisture condenses into water droplets. The upward-moving water droplets bump into downward-moving ice crystals, stripping off electrons and creating a static charge in the cloud.

This animated GIF shows charge accumulating in a cloud. The cloud looms over a landscape. The bottom part of the cloud stretches nearly all the way across the image. On the left edge of the cloud, a thin portion juts upward and spreads out, looking almost like the neck of a bird with a stumpy beak on one side and a long plume on the other. During the animation, blue dots appear in the bottom part of the cloud, representing negative charges. Red dots appear in the upper part, representing positive charges.
Updrafts and downdrafts within thunderstorms force rain, snow and ice to collide and acquire an electrical charge, which can cause lightning. Under just the right conditions, the fast-moving electrons can create a terrestrial gamma-ray flash.
NASA’s Goddard Space Flight Center

The top of the storm becomes positively charged, and the bottom becomes negatively charged, like two ends of a battery. Eventually the opposite charges build enough to overcome the insulating properties of the surrounding air – and zap! You get lightning.

An oval cloud dominates the center of this animation, with smaller, puffier clouds below and around it. A flash of light, signaling a lightning strike, appears below the right side of the cloud, and a cone of particles erupts from the top of the cloud. The cone starts small with just yellow particle, but as it expands upward, the yellow gives way to magenta. Then a flash occurs on the left side of the cloud, and another cone with similar colors lifts away from that site.
This illustration shows electrons accelerating upwards from a thunderhead.
NASA’s Goddard Space Flight Center

Scientists suspect that lightning reconfigures the cloud’s electrical field. In some cases, this allows electrons to rush toward the upper part of the storm at nearly the speed of light. That makes thunderstorms the most powerful natural particle accelerators on Earth!

This animation shows processes where gamma rays can be created and destroyed in interactions with matter. The background is a cloudy haze, representing a sub-atomic scene. The animation opens with a large blue circle representing an atom moving across the screen. A small electron, shown as a yellow dot, arcs across the screen, just grazing the atom. In the process a gamma ray is produced, which is represented by a magenta squiggle. The gamma ray moves across the screen and runs into another blue circle, representing another atom. The gamma ray disappears, and two particles appear, a yellow dot representing an electron, and a green dot representing a positron.
Interactions with matter can produce gamma rays and vice versa, as shown here in this illustration. High-energy electrons traveling close to the speed of light can be deflected by passing near an atom or molecule, producing a gamma ray. And a gamma ray passing through the electron shell of an atom transforms into two particles: an electron and a positron.
NASA’s Goddard Space Flight Center

When those electrons run into air molecules, they emit a terrestrial gamma-ray flash, which means that thunderstorms are creating some of the highest energy forms of light in the universe. But that’s not all – thunderstorms can also produce antimatter! Yep, you read that correctly! Sometimes, a gamma ray will run into an atom and produce an electron and a positron, which is an electron’s antimatter opposite!

Animation of the Fermi Gamma-ray Space Telescope. The satellite features a large black box structure with white instruments underneath. Two long solar arrays extend from opposite sides, just under the black box.
NASA’s Fermi Gamma-ray Space Telescope, illustrated here, scans the entire sky every three hours as it orbits Earth.
NASA’s Goddard Space Flight Center Conceptual Image Lab

Fermi can spot terrestrial gamma-ray flashes within 500 miles (800 kilometers) of the location directly below the spacecraft. It does this using an instrument called the Gamma-ray Burst Monitor which is primarily used to watch for spectacular flashes of gamma rays coming from the universe.

This animated GIF shows a map of the world stretched out to show all the continents in a rectangular layout. Magenta spots show up, indicating where Fermi has detected terrestrial gamma-ray flashes. The spots are concentrated on either side of the equator, which is where Fermi can detect them.
Visualization of ten years of Fermi observations of terrestrial gamma-ray flashes.
NASA’s Goddard Space Flight Center

There are an estimated 1,800 thunderstorms occurring on Earth at any given moment. Over its first 10 years in space, Fermi spotted about 5,000 terrestrial gamma-ray flashes. But scientists estimate that there are 1,000 of these flashes every day – we’re just seeing the ones that are within 500 miles of Fermi’s regular orbits, which don’t cover the U.S. or Europe.

The map above shows all the flashes Fermi saw between 2008 and 2018. (Notice there’s a blob missing over the lower part of South America. That’s the South Atlantic Anomaly, a portion of the sky where radiation affects spacecraft and causes data glitches.)

This animation pans in on satellite imagery of the swirl of clouds that was forming into Hurricane Julio. The image is a grayish-blue color with wisps of clouds. In the center is an oval with a faint cloud ring surrounding it and heavy cloud cover on the left side of the oval. An inset square pops up showing one region and marking two spots in purple to show where terrestrial gamma-ray flashes were observed. The inset is dated Aug 2, 2014.
Storm clouds produce some of the highest-energy light naturally made on Earth: terrestrial gamma-ray flashes. The tropical disturbance that would later become Hurricane Julio in 2014 produced four flashes within 100 minutes, with a fifth the next day.
NASA’s Goddard Space Flight Center

Fermi has also spotted terrestrial gamma-ray flashes coming from individual tropical weather systems. In 2014 Tropical Storm Julio produced four flashes in just 100 minutes!

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:09:09 On 12 November 2014, after a ten-year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate by taking a look back over the mission's highlights.
      Rosetta was an ESA mission with contributions from its Member States and NASA. It studied Comet 67P/Churyumov-Gerasimenko for over two years, including delivering lander Philae to the comet’s surface. Philae was provided by a consortium led by DLR, MPS, CNES and ASI.
      read the article Philae’s extraordinary comet landing relived.
      View the full article
    • By European Space Agency
      The 2025 ESA internship opportunities are now live! Positions are open in a wide range of fields, including engineering, science, IT, natural and social sciences, business, economics, and administrative services. This is your chance to launch your career in the extraordinary world of space exploration—don't miss out on this incredible opportunity to gain hands-on experience with one of the world’s leading space organisations! 
      View the full article
    • By NASA
      Bone cellsNASA Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms. 
      But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
      “Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
      O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
      jsc2022e083018 (10/26/2022) — A preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation. Image courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute “The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
      O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
      “It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
      During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
      As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen
      Malcolm o'malley
      Former NASA Intern
      “I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
      Artist conception of a future Artemis Base Camp on the lunar surface NASA When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity. 
      O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.
      View the full article
    • By USH
      Over the years, numerous mysterious events have been witnessed in the sky, defying explanation. Recently, yet another unusual sky phenomenon was observed over Southern Australia capturing attention and sparking curiosity. 

      Video footage reveals what appears to be a dome-shaped structure, with an even stranger detail: lightning seems to bounce off or perhaps even originate from within the dome. 
      The mysterious formation has led to numerous theories. Some viewers suggest it could be a unique (red) rainbow or a rare weather event like a haboob (sandstorm). Others speculate it might be the result of weather manipulation or even an energy field projected over the region. 

      Opinions also vary on the lightning, some say it’s bouncing off the dome, while others believe it could be emanating from within. Although it may just be an unusual natural phenomenon, the seemly strange interaction with the lightning remains unexplained.
        View the full article
    • By European Space Agency
      At the International Astronautical Congress (IAC) in Milan this week, ESA signed a contract for Element #1, the first phase of the HydRON Demonstration System. HydRON, which stands for High thRoughput Optical Network, is set to transform the way data-collecting satellites communicate, using laser technology that will allow satellites to connect with each other and ground networks much faster.
      View the full article
  • Check out these Videos

×
×
  • Create New...