Jump to content

30 Years Ago: STS-60, the First Shuttle-Mir Mission


NASA

Recommended Posts

  • Publishers

On Feb. 3, 1994, space shuttle Discovery took off on its 18th flight, STS-60. Its six-person crew of Commander Charles F. Bolden, Pilot Kenneth S. Reightler, and Mission Specialists N. Jan Davis, Ronald M. Sega, Franklin R. Chang-Díaz, who served as payload commander, and Sergei K. Krikalev of the Russian Space Agency, now Roscosmos, flew the first mission of the Shuttle-Mir Program. Other objectives of the mission included the first flight of the Wake Shield Facility, a free-flying satellite using the ultra-vacuum of space to generate semi-conductor films for advanced electronics and the second flight of a Spacehab commercially developed pressurized module to enable multidisciplinary research and technology demonstrations. The eight-day mission marked an important step forward in international cooperation and the commercial development of space.

The STS-60 crew patch The STS-60 crew of (clockwise from bottom left) Pilot Kenneth S. Reightler, Mission Specialists Franklin R. Chang-Díaz, Ronald M. Sega, Sergei K. Krikalev representing the Russian Space Agency, now Roscosmos, and N. Jan Davis, and Commander Charles F. Bolden The patch for the Phase 1 Shuttle-Mir program
Left: The STS-60 crew patch. Middle: The STS-60 crew of (clockwise from bottom left) Pilot Kenneth S. Reightler, Mission Specialists Franklin R. Chang-Díaz, Ronald M. Sega, Sergei K. Krikalev representing the Russian Space Agency, now Roscosmos, and N. Jan Davis, and Commander Charles F. Bolden. Right: The patch for the Phase 1 Shuttle-Mir program.

In Oct. 1992, NASA announced Bolden, Reightler, Davis, Sega, and Chang-Díaz as the STS-60 crew. For Bolden and Chang-Díaz, STS-60 represented their fourth trips into space; for Bolden the second as commander. Reightler and Davis each had completed one previous spaceflight, with Sega as the sole rookie on the crew. The announcement noted that one of two RSA cosmonauts already in training at NASA’s Johnson Space Center in Houston would join the crew at a later date. In early April 1993, NASA designated Krikalev, a veteran of two long-duration missions aboard the Mir space station, as the prime international crew member, with Vladimir G. Titov named as his backup. The now six-person crew trained extensively for the next nine months for the history-making flight.

Space shuttle Discovery departs the Vehicle Assembly Building on its way to Launch Pad 39A The STS-60 crew departs crew quarters for Launch Pad 39A Liftoff of space shuttle Discovery to begin the STS-60 mission
Left: Space shuttle Discovery departs the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The STS-60 crew departs crew quarters for Launch Pad 39A. Right: Liftoff of space shuttle Discovery to begin the STS-60 mission.

Discovery landed at NASA’s Kennedy Space Center in Florida after its previous mission, STS-51, on Sept. 22, 1993, where workers towed it to the Orbiter Processing Facility to refurbish it for STS-60. They towed it to the Vehicle Assembly Building on Jan. 4, 1994, for mating with its external tank and twin solid rocket boosters, and rolled the completed stack to Launch Pad 39A six days later. The astronauts participated in the Terminal Countdown Demonstration Test, a rehearsal for the actual countdown, on Jan. 14. Senior managers held the Flight Readiness Review on Jan. 22 to confirm the Feb. 3 launch date. Engineers began the countdown for launch on Jan. 31. Liftoff occurred on schedule at 7:10 a.m. EST on Feb. 3, and Discovery and its six-person crew flew up the U.S. East Coast to achieve a 57-degree inclination orbit.

Discovery’s payload bay, showing the Spacehab module including the externally mounted Sample Return Experiment, and the Canadian-built Remote Manipulator System Astronauts N. Jan Davis, left, and Franklin R. Chang-Díaz open the hatch to the Spacehab module Ronald M. Sega monitors Sergei K. Krikalev as he performs a neurosensory investigation
Left: Discovery’s payload bay, showing the Spacehab module including the externally mounted Sample Return Experiment, and the Canadian-built Remote Manipulator System. Middle: Astronauts N. Jan Davis, left, and Franklin R. Chang-Díaz open the hatch to the Spacehab module. Right: Ronald M. Sega monitors Sergei K. Krikalev as he performs a neurosensory investigation.

Once in orbit, the astronauts opened Discovery’s payload bay doors to begin their activities. Chang-Díaz and Davis opened the hatches to the Spacehab, accessed from the middeck through the airlock and a connecting tunnel, and activated the module’s systems. They began activating some of the 12 experiments in the Spacehab, primarily focused on biotechnology and materials processing. In the middeck, Reightler, Davis, Sega, and Krikalev performed the first session of the joint neurovestibular experiment, which they repeated five more times during the mission. The astronauts also began activating some of the experiments in the shuttle’s middeck.

Charles F. Bolden prepares to take a blood sample from Franklin R. Chang-Díaz for the metabolic experiment Kenneth S. Reightler processes blood samples in the centrifuge Reightler places the processed blood samples in the GN2 freezer
Left: Charles F. Bolden prepares to take a blood sample from Franklin R. Chang-Díaz for the metabolic experiment. Middle: Kenneth S. Reightler processes blood samples in the centrifuge. Right: Reightler places the processed blood samples in the GN2 freezer.

The astronauts began the joint metabolic experiment to investigate biochemical responses to weightlessness on flight day 2. With Bolden and Chang-Díaz serving as phlebotomists, they and Reightler participated as subjects for this study that involved drawing blood samples, spinning them in a centrifuge, and placing them in gaseous nitrogen freezers for return to Earth for analysis.

The Wake Shield Facility (WSF) deployed at the end of the Canadian-built Remote Manipulator System, with the aurora in the background The WSF at the end of the RMS The robotic arm about to stow the Wake Shield Facility
Left: The Wake Shield Facility (WSF) deployed at the end of the Canadian-built Remote Manipulator System, with the aurora in the background. Middle: The WSF at the end of the RMS. Right: The robotic arm about to stow the Wake Shield Facility.

Operations with the wake shield began in flight day three. Davis grappled the WSF (Wake Shield Facility) with the shuttle’s Canadian-built remote manipulator system, or robotic arm, lifting it out of the payload bay, placing it in the “ram clearing” attitude to have atomic oxygen present in low Earth orbit cleanse it of contaminants that could hamper the purity of any produced samples. Plans called for Davis to then release the facility for its two days of free flight. During this process, the astronauts and Mission Control could not properly assess the satellite’s configuration, and troubleshooting efforts led to loss of communications with it. Mission Control instructed the astronauts to berth the facility overnight as ground teams assessed the problem. Engineers traced the problem to a radio frequency interference issue missed due to inadequate preflight testing. The next morning, Davis once again picked up the facility with the robotic arm. The communications issue recurred, but a reboot of the facility’s computer appeared to fix that problem. However, problems cropped up with the satellite’s navigation system, precluding its deployment. All operations and manufacturing occurred with the WSF remaining attached to the robotic arm. Despite this, the facility demonstrated its capabilities by producing five semiconductor films of good quality before Davis berthed it back in the payload bay on flight day seven.

N. Jan Davis takes a peripheral venous pressure measurement on Charles F. Bolden Davis operates a fluid processing apparatus, one of the experiments in the Commercial Generic Bioprocessing Apparatus Bolden operates the Organic Separation experiment
Left: N. Jan Davis takes a peripheral venous pressure measurement on Charles F. Bolden. Middle: Davis operates a fluid processing apparatus, one of the experiments in the Commercial Generic Bioprocessing Apparatus. Right: Bolden operates the Organic Separation experiment.

Meanwhile, the astronauts continued with experiments in the middeck and the Spacehab. Another joint investigation called for the measurement of peripheral venous blood pressure. The Spacehab module contained 12 experiments in the fields of biotechnology, materials processing, and microacceleration environment measurement. A thirteenth experiment mounted on the module’s exterior collected cosmic dust particles on aerogel capture cells.

Ronald M. Sega operates the liquid phase sintering experiment Franklin R. Chang-Díaz operates the Space Experiment Furnace The Stirling Orbiter Refrigerator/Freezer technology demonstration The STS-60 crew enjoys ice cream stored in the freezer
Left: Ronald M. Sega operates the liquid phase sintering experiment. Middle left: Franklin R. Chang-Díaz operates the Space Experiment Furnace. Middle right: The Stirling Orbiter Refrigerator/Freezer technology demonstration. Right: The STS-60 crew enjoys ice cream stored in the freezer.

A technology demonstration on STS-60 involved the test flight of a Stirling Orbiter Refrigerator/Freezer. Planned for use on future missions to store biological samples, on STS-60 the astronauts tested the unit’s ability to chill water containers and provided the crew with a rare treat in space: real ice cream.

In the Mission Control Center, President William J. “Bill” Clinton chats with the STS-60 crew during his visit to NASA’s Johnson Space Center The Mir crew and the STS-60 crew talk with each other through the communications link established during the ABC program Good Morning America
Left: In the Mission Control Center, President William J. “Bill” Clinton chats with the STS-60 crew during his visit to NASA’s Johnson Space Center. Right: The Mir crew and the STS-60 crew talk with each other through the communications link established during the ABC program Good Morning America.

On the astronauts’ fifth day in orbit, President William J. “Bill” Clinton visited Johnson and stopped in the Mission Control Center to talk with them. NASA Administrator Daniel S. Golden and Johnson Director Carolyn L. Huntoon accompanied the President on his tour. President Clinton praised the crew, saying, “I think this is the first step in what will become the norm in global cooperation. And when we get this space station finished…it’s going to be a force for peace and progress that will be truly historic, and you will have played a major role in that.” The following day, the ABC program Good Morning America set up a communications link between Bolden, Davis, and Krikalev aboard Discovery and the three cosmonauts aboard the Mir space station. The two crews chatted with each other and answered reporters’ questions.

STS-60 Earth observation photographs of North American city Los Angeles STS-60 Earth observation photographs of North American city Chicago STS-60 Earth observation photographs of North American city Montréal STS-60 Earth observation photographs of North American city New York City
A selection of STS-60 Earth observation photographs of North American cities. Left: Los Angeles. Middle left: Chicago. Middle right: Montréal. Right: New York City.

Every space mission includes astronaut Earth photography, and the 57-degree inclination of STS-60 enabled this crew to image areas on the planet not usually visible to astronauts. Many of the images included spectacular views of snow-covered landscapes in the northern hemisphere winter.

Deployment of one of the six spheres of the Orbital Debris Radar Calibration Spheres experiment The six spheres fly away from the shuttle Deployment of the University of Bremen satellite
Left: Deployment of one of the six spheres of the Orbital Debris Radar Calibration Spheres experiment. Middle: The six spheres fly away from the shuttle. Right: Deployment of the University of Bremen satellite.

Once the astronauts had stowed the WSF on flight day seven, they could proceed to the deployment of two payloads. The first called Orbital Debris Radar Calibration Spheres consisted of deploying six metal spheres of three different sizes from Discovery’s payload bay. Ground-based radars and optical telescopes observed and tracked the metal spheres to calibrate their instruments. The University of Bremen in Germany provided the second deployable payload. It measured various parameters of its in-orbit environment as well as its internal pressure and temperature as it burned up when it reentered Earth’s atmosphere.

The STS-60 crew members pose near the end of their successful mission Franklin R. Chang-Díaz, left, and N. Jan Davis close the hatch to the Spacehab module at the end of the mission
Left: The STS-60 crew members pose near the end of their successful mission. Right: Franklin R. Chang-Díaz, left, and N. Jan Davis close the hatch to the Spacehab module at the end of the mission.

With most of the experiments completed by flight day eight, the astronauts busied themselves with tidying up the middeck and the Spacehab. Bolden and Reightler tested Discovery’s reaction control system thrusters and flight control surfaces in preparation for the deorbit, entry, and landing the following day.

Charles F. Bolden prepares to bring Discovery home Bolden makes a perfect touchdown at NASA’s Kennedy Space Center in Florida to conclude STS-60
Left: Charles F. Bolden prepares to bring Discovery home. Right: Bolden makes a perfect touchdown at NASA’s Kennedy Space Center in Florida to conclude STS-60.

On the morning of Feb. 11, the mission’s final day in space, Chang-Díaz and Davis deactivated the Spacehab and closed the hatches to the module. The astronauts donned their launch and entry suits, but NASA delayed their deorbit burn by one orbit due to inclement weather at John F. Kennedy Space Center. Ninety minutes later, they fired the two Orbital Maneuvering System engines to bring them out of orbit and Bolden guided Discovery to a smooth landing at Kennedy, ending the STS-60 mission after 8 days, 7 hours, and 9 minutes, having circled the Earth 130 times.

Enjoy the crew narrate a video about the STS-60 mission. Read Bolden’s and Sega‘s recollections of the STS-60 mission in their oral histories with Johnson’s History Office.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This photo shows the Optical Telescope Assembly for NASA’s Nancy Grace Roman Space Telescope, which was recently delivered to the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md.NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and supporting structures and electronics. The assembly was delivered Nov. 7. to the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where the observatory is being built.
      The telescope will focus cosmic light and send it to Roman’s instruments, revealing many billions of objects strewn throughout space and time. Using the mission’s Wide Field Instrument, a 300-megapixel infrared camera, astronomers will survey the cosmos all the way from the outskirts of our solar system toward the edge of the observable universe. Scientists will use Roman’s Coronagraph Instrument to test new technologies for dimming host stars to image planets and dusty disks around them in far better detail than ever before.
      “We have a top-notch telescope that’s well aligned and has great optical performance at the cold temperatures it will see in space,” said Bente Eegholm, optics lead for Roman’s Optical Telescope Assembly at NASA Goddard. “I am now looking forward to the next phase where the telescope and instruments will be put together to form the Roman observatory.”
      In this photo, optical engineer Bente Eegholm inspects the surface of the primary mirror for NASA’s Nancy Grace Roman Space Telescope. This 7.9-foot (2.4-meter) mirror is a major component of the Optical Telescope Assembly, which also contains nine additional mirrors and supporting structures and electronics.NASA/Chris Gunn Designed and built by L3Harris Technologies in Rochester, New York, the assembly incorporates key optics (including the primary mirror) that were made available to NASA by the National Reconnaissance Office. The team at L3Harris then reshaped the mirror and built upon the inherited hardware to ensure it would meet Roman’s specifications for expansive, sensitive infrared observations.
      “The telescope will be the foundation of all of the science Roman will do, so its design and performance are among the largest factors in the mission’s survey capability,” said Josh Abel, lead Optical Telescope Assembly systems engineer at NASA Goddard.
      The team at Goddard worked closely with L3Harris to ensure these stringent requirements were met and that the telescope assembly will integrate smoothly into the rest of the Roman observatory.
      The assembly’s design and performance will largely determine the quality of the mission’s results, so the manufacturing and testing processes were extremely rigorous. Each optical component was tested individually prior to being assembled and assessed together earlier this year. The tests helped ensure that the alignment of the telescope’s mirrors will change as expected when the telescope reaches its operating temperature in space.
      Then, the telescope was put through tests simulating the extreme shaking and intense sound waves associated with launch. Engineers also made sure that tiny components called actuators, which will adjust some of the mirrors in space, move as predicted. And the team measured gases released from the assembly as it transitioned from normal air pressure to a vacuum –– the same phenomenon that has led astronauts to report that space smells gunpowdery or metallic. If not carefully controlled, these gases could contaminate the telescope or instruments.
      Upon arrival at NASA’s Goddard Space Flight Center, the Optical Telescope Assembly for the agency’s Nancy Grace Roman Space Telescope was lifted out of the shipping fixture and placed with other mission hardware in Goddard’s largest clean room. Now, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.NASA/Chris Gunn Finally, the telescope underwent a month-long thermal vacuum test to ensure it will withstand the temperature and pressure environment of space. The team closely monitored it during cold operating conditions to ensure the telescope’s temperature will remain constant to within a fraction of a degree. Holding the temperature constant allows the telescope to remain in stable focus, making Roman’s high-resolution images consistently sharp. Nearly 100 heaters on the telescope will help keep all parts of it at a very stable temperature.
      “It is very difficult to design and build a system to hold temperatures to such a tight stability, and the telescope performed exceptionally,” said Christine Cottingham, thermal lead for Roman’s Optical Telescope Assembly at NASA Goddard.
      Now that the assembly has arrived at Goddard, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.
      With this milestone, Roman remains on track for launch by May 2027.
      “Congratulations to the team on this stellar accomplishment!” said J. Scott Smith, the assembly’s telescope manager at NASA Goddard. “The completion of the telescope marks the end of an epoch and incredible journey for this team, and yet only a chapter in building Roman. The team’s efforts have advanced technology and ignited the imaginations of those who dream of exploring the stars.”
      Virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      claire.andreoli@nasa.gov
      301-286-1940
      Explore More
      3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 7 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 2 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
      Article 3 months ago Share
      Details
      Last Updated Nov 14, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Exoplanets Goddard Space Flight Center The Universe View the full article
    • By European Space Agency
      Video: 00:06:45 Smile is the Solar wind Magnetosphere Ionosphere Link Explorer, a brand-new space mission currently in the making. It will study space weather and the interaction between the solar wind and Earth’s environment.
      Unique about Smile is that it will take the first X-ray images and videos of the solar wind slamming into Earth’s protective magnetic bubble, and its complementary ultraviolet images will provide the longest-ever continuous look at the northern lights.
      In this first of several short videos, David Agnolon (Smile Project Manager) and Philippe Escoubet (Smile Project Scientist) talk about the why and the how of Smile. You’ll see scenes of the building and testing of the spacecraft’s payload module by Airbus in Madrid, including the installation of one of the European instruments, the Soft X-ray Imager from the University of Leicester.
      Smile is a 50–50 collaboration between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS). ESA provides the payload module of the spacecraft, which carries three of the four science instruments, and the Vega-C rocket which will launch Smile to space. CAS provides the platform module hosting the fourth science instrument, as well as the service and propulsion modules.
      View the full article
    • By NASA
      Dr. Annie Meier (second from left) and her team inside the Applied Chemistry Lab at NASA’s Kennedy Space Center in Florida began supplementing their normal workload in mid-2023 with efforts to improve the lab’s sustainable practices. In 2024, the laboratory became the first at NASA to receive certification from the non-profit My Green Lab for its efforts in sustainability.NASA/Kim Shiflett NASA’s Kennedy Space Center in Florida has a long record of achievements in sustainability and recently added another to the list when the spaceport’s Applied Chemistry Lab became the first in the agency to be certified for its environmentally conscious practices.
      The My Green Lab Certification recognizes sustainability best practices in research facilities around the world. The certification program run by My Green Lab, a non-profit dedicated to creating a culture of sustainability through science, is considered a key measure of progress towards a zero-carbon future by the United Nations Race to Zero campaign.
      “When I heard our lab achieved certification, I was so happy,” said Dr. Annie Meier, one of the laboratory’s chemical engineers. “It meant we could now make a conscious effort to share these green practices with all who work in our lab. We even added them to our training materials for new and incoming members in the lab.”
      The lab performs research and technology development for a wide range of chemistry and engineering-related applications to solve the unique operational needs of NASA and outside partners. The lab primarily focuses on in-situ resource utilization and addressing technology gaps related to lunar and Martian sustainability. The lab’s scientists also provide expertise in the fields of logistics reduction, plasma science, hypergolic fuels, analytical instrumentation, and gas analysis.
      While sustainability has long been a focus of the lab, the journey to the certification began when Riley Yager, a doctoral student from University of Alabama at Birmingham – where Meier was a technical monitor – shared her knowledge of the program after pursuing green lab practices at her university.
      “I work as a sustainability ambassador at my university, so I knew of this program,” Yager said. “Sustainable practices are something woven into my everyday life, so naturally I wanted to bring those practices into my lab environments.”
      After learning about the program from Yager and discovering the many other academic institutions and companies certified globally, Meier submitted a proposal to NASA and obtained funding to pursue certification for the Applied Chemistry Lab.
      After a kickoff event hosted by My Green Lab in April 2023, the lab’s path to certification began with a self-assessment survey, in which members of the lab answered a series of questions about their practices in areas such as cold storage, green chemistry, infrastructure energy, resource management, waste reduction, and water. My Green Lab collected and analyzed the answers, providing a baseline assessment and recommendations to improve the lab’s sustainable practices.
      “We took their initial survey and learned we had lots of room for improvements as a lab,” Meier said. “Then I worked with a few interns over the summer to spearhead the ‘green team’ to implement changes and get momentum from the entire lab.”
      The lab began with minimizing purchases by improving efficiencies during the inventory process. The team also performed a waste audit of all seven of its laboratories. They adopted nitrile glove and pipette tip box recycling, reviewed the “12 principles of green chemistry” with the lab members, and installed stickers and signage about what can and cannot be unplugged to save energy. Additionally, they installed low-flow aerators on the lab tap sinks to reduce flow, and the lab now uses a recycling sink to save on water or solvents for cleaning parts.
      As luck would have it, Yager ended up working at the Applied Chemistry Lab on a NASA fellowship and became a member of the green team.
      “It was really fun to see that come full circle,” Meier said. “Almost all members of the lab, from our fellows to most senior members, used their self-motivation to get on the sustainability train.”
      The green team continued to grow as the lab implemented changes to become more sustainable. Just over six months after the kickoff event, they completed another assessment survey. With possible certification levels of bronze, silver, gold, platinum, and green – the level that adheres closest to My Green Lab’s highest standards – the ACL was certified green, marking the first time any NASA center obtained a My Green Lab Certification.
      “Our lab is looking to sustain these green practices and achieve the same status when we are reassessed in the future,” Meier said. “This effort could be a wonderful catalyst to inspire other work groups to lean towards more ‘green’ practices at the frontline in our laboratories.”
      The NASA Kennedy lab joined over 2,500 labs in a range of sectors that received the My Green Lab certification. Maintaining the distinction will require recertification every two years.
      View the full article
    • By NASA
      Successfully deployed from the space shuttle Challenger during the February 1984 STS-41B mission, the Westar 6 and Palapa B2 communications satellites ended up in incorrect orbits due to failures of their upper stage rockets. During STS-51A in November 1984, Discovery’s second trip into space, the crew of Commander Frederick H. “Rick” Hauck, Pilot David M. Walker, and Mission Specialists Joseph P. Allen, Anna L. Fisher, and Dale A. Gardner worked as a team to not only deploy two new satellites but also to retrieve the two wayward but otherwise healthy satellites for return to Earth. Hauck and Walker piloted Discovery to rendezvous with each satellite in turn, Allen and Gardner retrieved them during two spacewalks, and Fisher grappled and placed them in the payload bay for return to Earth. After refurbishment, both satellites returned to space.

      Left: The STS-51A crew of Dale A. Gardner, left, David M. Walker, Anna L. Fisher, Frederick “Rick” H. Hauck, and Joseph P. Allen. Right: The STS-51A crew patch.
      NASA originally designated Hauck, Walker, Allen, Fisher, and Gardner as a crew in November 1983 and assigned them to STS-41H, a mission aboard Challenger planned for late September 1984 to either deploy the second Tracking and Data Relay Satellite (TDRS) or fly a classified payload for the Department of Defense. Due to ongoing problems with the Inertial Upper Stage that failed to put the first TDRS satellite in its correct orbit during STS-6, NASA canceled STS-41H and shifted Hauck’s crew to STS-51A. In February 1984, an agreement between NASA and the Canadian government added an as-yet unnamed Canadian payload specialist to the STS-51A crew. Managers later named the Canadian as Marc Garneau and reassigned him to STS-41G.
      A shuffling of payloads following the STS-41D launch abort resulted in STS-51A now deploying the Anik D2 satellite for Canada and Leasat 1 (also known as Syncom IV-1) for the U.S. Navy. By early August, the launch date had slipped to Nov. 2, with NASA considering the possibility of retrieving the two wayward satellites from STS-41B, officially adding that task on Aug. 13. NASA selected Allen in 1967 as one of 11 scientist-astronauts, while the rest of the crew hail from the Class of 1978. Hauck, on his second mission after serving as pilot on STS-7, has the distinction as the first from his class to command a shuttle mission. Allen and Gardner had each flown one previous mission, STS-5 and STS-8, respectively, while for Walker and Fisher STS-51A represented their first flight. Fisher has the distinction as the first mother in space. 

      Left: After its arrival from the Orbiter Processing Facility, workers in the Vehicle Assembly Building (VAB) prepare to lift Discovery for mating with an External Tank (ET) and Solid Rocket Boosters (SRBs). Middle: Workers lift Discovery to stack it with the ET and SRBs. Right: The completed stack prepares to leave the VAB for the rollout to Launch Pad 39A.
      Discovery arrived back at NASA’s Kennedy Space Center (KSC) in Florida on Sept. 10, returning from Edwards Air Force Base in California following the STS-41D mission. Workers towed it to the Orbiter Processing Facility (OPF) the next day to begin the process of refurbishing it for STS-51A. On Oct. 18, they rolled it over to the Vehicle Assembly Building (VAB), for stacking with an External Tank and twin Solid Rocket Boosters.

      At NASA’s Kennedy Space Center in Florida, space shuttle Discovery rolls out to Launch Pad 39A, with the Saturn V rocket on display in the foreground.
      The completed stack rolled out to Launch Pad 39A on Oct. 23. Two days later, the five-member STS-51A crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch. The crew returned to KSC on Nov. 5, the day the countdown began for a planned Nov. 7 launch. High upper-level winds that day forced a one-day delay.

      Left: STS-51A astronaut Dale A. Gardner trains for the capture of a satellite using the Apogee Kick Motor Capture Device. Middle: Astronaut Anna L. Fisher trains to use the Canadian-built Remote Manipulator System, or robotic arm. Right: As part of the Terminal Countdown Demonstration Test, the STS-51A astronauts practice rapid evacuation from the launch pad.
      Following deployment from Challenger during STS-41B, the upper stages of both the Westar 6 and Palapa B2 satellites malfunctioned, leaving them in non-useable 160-by-600-mile-high orbits instead of the intended 22,300-mile-high geostationary orbits required for their normal operations. While both satellites remained healthy, their own thrusters could not boost them to the proper orbits. NASA devised a plan to have astronauts retrieve the satellites during spacewalks using the jetpack known as the Manned Maneuvering Unit (MMU), after which the shuttle’s Canadian-built Remote Manipulator System (RMS) or robot arm would grapple them and place them into the cargo bay for return to Earth. Astronauts had demonstrated the capability of the MMU during the STS-41C Solar Max satellite repair mission in April 1984 and NASA felt confident of its ability to capture and return Westar and Palapa. 
      In the weeks prior to STS-51A, ground controllers lowered the orbits of both satellites and reduced their spin rates from 50 to 1 rpm to enable capture by the shuttle astronauts. Engineers at NASA’s Johnson Space Center in Houston developed the Apogee Kick Motor Capture Device (ACD), otherwise known as the stinger due to its appearance, to allow an astronaut to capture the satellites while flying the MMU. Once relocated over the payload bay, a second astronaut would remove the satellite’s omnidirectional antenna with pruning shears and install an Antenna Bridge Structure (ABS) with a grapple fixture over the satellite’s main antenna dish. Allen would fly the MMU to capture Palapa, then he would switch roles with Gardner who would capture Westar. Fisher would use the RMS to grapple the satellites by this second fixture and lower them into specially built cradles to secure them into the payload bay.

      Left: The STS-51A crew leaves crew quarters on their way to Launch Pad 39A. Middle: Liftoff of Discovery on the STS-51A mission. Right: View inside Discovery’s payload bay shortly after orbital insertion – the top of Anik D2 is visible, with Leasat 1 hidden behind it.
      Space shuttle Discovery roared off KSC’s Launch Pad 39A on Nov. 8, 1984, to begin the STS-51A mission and mark the orbiter’s first return to space. For Gardner, launch day coincided with his 36th birthday. The launch took place just 26 days after the landing of the previous mission, STS-41G, a then record-breaking turnaround time between shuttle flights. Eight and a half minutes after liftoff, Discovery and its five-member crew reached space and shortly thereafter settled into a 182-by-172-mile-high initial orbit. As their first order of business, the crew checked out the RMS to ensure its functionality for the satellite captures later in the mission. They also performed the first rendezvous burn to begin the approach to the Palapa satellite. The crew then settled down for its first night’s sleep in orbit.

      Left: Nighttime deploy of the Anik D2 satellite. Middle: Deploy of the Leasat 1 satellite. Right: Leasat 1 as it departs from Discovery.
      The primary activity of the second flight day involved Allen deploying the 2,727-pound Anik D2 satellite via a spring ejection mechanism, occurring on time and with no issues. The crew also circularized the shuttle’s orbit at 186 miles. The next day, Gardner deployed the 17,000-pound Leasat 1 using the Frisbee style mechanism used to deploy the first Leasat during STS-41D two months earlier. With the satellite deployments complete, the crew began to focus on the rendezvous maneuvers to bring them close to the Palapa B2 satellite while Allen and Gardner verified the functionality of their spacesuits. On flight day 4, the astronauts reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in order to prevent the spacewalking astronauts from developing the bends inside the spacesuits that operated at 4.3 psi.

      Left: During the first spacewalk, Jospeh P. Allen captures the Palapa B2 satellite. Middle: Anna L. Fisher grasps Allen and Palapa with the Remote Manipulator System, or robotic arm. Right: Allen, left, and Dale A. Gardner prepare to place Palapa in its cradle in the payload bay.
      On the fifth mission day, after Hauck and Walker piloted Discovery to within 35 feet of Palapa, Allen and Gardner exited the airlock to begin the spacewalk portion of the satellite capture. Allen donned the MMU mounted on the side wall of the cargo bay, attached the stinger to its arms, and flew out to Palapa. Once there, he inserted the stinger into the satellite’s Apogee Kick Motor bell and using the MMU’s attitude control system stopped Palapa’s spin.
      Fisher then steered the RMS to capture a grapple fixture mounted on the stinger between Allen and the satellite. She then maneuvered them over the payload bay where Gardner waited to remove its omnidirectional antenna and install the bridge structure. However, Gardner could not attach the ABS to the satellite due to an unexpected clearance issue on the satellite. Using a backup plan, Allen undocked from the stinger, leaving it attached to the satellite as well as the RMS, and stowed the MMU in the payload bay. With Allen now holding the satellite by its antenna, Gardner attached an adaptor to the bottom end of the satellite to secure it in its cradle in the payload bay. This plan worked and Allen and Gardner completed the spacewalk in exactly six hours.

      Left: Dale A. Gardner flies the Manned Maneuvering Unit to capture Westar 6 during the second spacewalk. Middle: Anna L. Fisher operates the Remote Manipulator System from Discovery’s aft flight deck. Right: Gardner, left, and Joseph P. Allen maneuver Westar prior to placing it in its cradle in the payload bay.
      Between the two spacewalk days, the crew serviced the spacesuits, conducted routine maintenance on the shuttle, and prepared for the second rendezvous, this time to retrieve Westar. Allen and Gardner switched roles for the second spacewalk on flight day seven, with Gardner flying the MMU to capture Westar. The astronauts repeated the procedure from the first spacewalk, except for not removing the omni antenna so they could use it as a handhold. With Westar secured in the payload bay, Gardner and Allen completed the second spacewalk in 5 hours and 42 minutes.

      Left: Dale A. Gardner, left, and Joseph P. Allen pose at the end of the Remote Manipulator System controlled by Anna L. Fisher, holding a For Sale sign above the two retrieved satellites secured in Discovery’s payload bay. Middle: Inflight photo of the STS-51A crew after the successful satellite retrievals. Right: View inside Discovery’s payload bay shortly before the deorbit burn, with Westar 6 in the foreground and Palapa B2 behind it.
      During their final full day in space, Discovery’s crew repressurized the shuttle’s cabin to 14.7 psi and tidied the cabin in preparation for reentry. On Nov. 16, the astronauts closed the payload bay doors and fired the Orbital Maneuvering System engines to begin the descent back to Earth. Hauck guided Discovery to a smooth landing at KSC, completing a flight of 7 days, 23 hours, and 45 minutes. The crew had traveled nearly 3.3 million miles and completed 127 orbits around the Earth. The next day, workers towed Discovery to the OPF to begin preparing it for its next flight, STS-51C in January 1985.

      Left: Discovery streaks over Houston on its way to land at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Discovery moments before touchdown at KSC. Right: NASA officials greet the STS-51A astronauts as they exit Discovery.
      As a postscript, STS-51A marked the last flight to use the MMUs, and the last untethered spacewalks until 1994 when STS-64 astronauts tested the Simplified Aid for EVA Rescue (SAFER). All subsequent spacewalks on the space shuttle and the International Space Station used safety tethers, with the SAFER as a backup in case a crew member disconnects from the vehicle.

      Left: In the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida, workers inspect the Westar 6, left, and Palapa B2 satellites in Discovery’s payload bay. Right: The STS-51A crew, with Lloyd’s of London representative Stephen Merritt, sitting at right, during their visit to London.
      On Dec. 7, 1984, in a ceremony at the White House, President Ronald W. Reagan presented the STS-51A crew with the Lloyd’s of London – the company had insured the two satellites they returned to Earth – Silver Medal for Meritorious Salvage Operations. Fisher has the distinction as only the second woman to receive that award. In February 1985, Lloyd’s flew the crew to London on the Concorde for a week of activities, including addressing the Lloyd’s underwriters and tea with Prince Charles at Kensington Palace.
      Hong Kong-based AsiaSat purchased the Westar 6 satellite, refurbished it, and relaunched it as AsiaSat 1 on April 7, 1990, on a Chinese CZ-3 rocket. Title to the Palapa B2 satellite returned to Indonesia after its relaunch as Palapa B2R on April 13, 1990, aboard a Delta rocket.
      Read recollections of the STS-51A mission by Hauck, Allen, and Fisher in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-51A mission.
      Explore More
      1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 18 hours ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere
      Article 4 days ago 3 min read Halloween on the International Space Station
      Article 1 week ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.
      These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
      The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.
      Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”
      The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.
      The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.
      Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.
      The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.
      NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”
      After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      1 min read NASA Awards Contract for Refuse and Recycling Services
      Article 5 days ago 5 min read We Are All Made of Cells: Space and the Immune System
      Article 6 days ago 2 min read NASA Brings Drone and Space Rover to Air Show
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
  • Check out these Videos

×
×
  • Create New...