Jump to content

First Hot Fire Test of the Year for Artemis


NASA

Recommended Posts

  • Publishers
White vapor clouds billow up and to the right of this image during a hot fire test. The sun is a diffuse, bright yellow spot, covered by wispy clouds that dominate the sky.
NASA/Danny Nowlin

Clouds of white vapor pile up at NASA’s Stennis Space Center in Bay St. Louis, Mississippi during a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 17, 2024. This test series is critical for future flights of NASA’s SLS (Space Launch System) rocket in support of the Artemis campaign.

During the Jan. 17 test, operators followed a “test like you fly” approach, firing the engine for the same amount of time – almost eight-and-a-half minutes (500 seconds) – needed to launch SLS and at power levels ranging between 80% to 113%.

Image Credit: NASA/Danny Nowlin

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Sarah Ryan is the Raptor engine lead for NASA’s HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “With Artemis, we’re moving beyond what NASA did with Apollo and that’s really inspiring, especially to our younger workforce. We’re trying to push farther and it’s really going to drive a lot of technology development on the way there,” Ryan said. “This is a dream come true to be working on Artemis and solving problems so humanity can get back to the Moon then on to Mars.” NASA/Ken Hall A passion for puzzles, problem-solving, and propulsion led Sarah Ryan – a native of Columbus, Ohio – to her current position as Raptor engine lead for NASA’s HLS (Human Landing System) insight team at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The SpaceX Raptor rocket engine powers the company’s Starship and Super Heavy rocket. SpaceX will land astronauts on the Moon for NASA’s Artemis III and Artemis IV missions using the Starship HLS. NASA’s Artemis campaign aims to land the first woman, first person of color, and first international partner astronaut on the Moon.
      “My team looks at how the components of the Raptor engine work together. Then, we evaluate the performance of the full system to make sure it will accomplish the NASA HLS and Artemis missions,” Ryan said. “I get to see lots of pieces and parts of the puzzle and then look at the system as a whole to make sure it meets NASA’s needs.”
      While earning a bachelor’s degree from Case Western Reserve University in Cleveland with a dual major in aerospace engineering and mechanical engineering, Ryan had an internship at NASA Marshall, working on a payload for a science mission onboard the International Space Station.
      After working for a year on satellite design, Ryan returned to NASA Marshall. She noted that the opportunity to work in Marshall’s Engine Systems branch, to be involved with pushing technology forward, and to work on Artemis, really drew her back to NASA. Ryan later earned a master’s degree in aerospace systems from the University of Alabama in Huntsville.
      When not occupied with rocket engine development, Ryan likes to work on quieter hobbies in her free time, including reading, board games, crocheting, and solving all manner of puzzles – crosswords, number games, word games, and more. Her interest for solving puzzles carries over into her work on the Raptor rocket engines for HLS.
      “My favorite tasks are the ones that most resemble a puzzle, Ryan said. “If we’re investigating an issue and have a lot of information to assess, I love putting all the pieces together and figuring out what happened, why, and the path forward. I enjoy digging into the data and solving those puzzles.”
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system

      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jacquelyn Shuman visually assesses a prescribed fire at Ft. Stewart in Georgia, working with partner organizations as part of the Department of Defense Ft. Stewart 2024 Fire Research Campaign. USFS/Linda Chappell Jacquelyn Shuman, FireSense Project Scientist at NASA Ames Research Center, originally wanted to be a veterinarian. By the time she got to college, Shuman had switched interests to biology, which became a job teaching middle and high school science. Teaching pivoted to finance for a year, before Shuman returned to the science world to pursue a PhD.

      It was in a forest ecology class taught by her future PhD advisor, Herman “Hank” Shugart, that she first discovered a passion for ecosystems and dynamic vegetation that led her into the world of fire science, and eventually to NASA Ames.

      While Shuman’s path into the world of fire science was not a direct one, she views her diverse experiences as the key to finding a fulfilling career. “Do a lot of different things and try a lot of different things, and if one thing isn’t connecting with you, then do something different,” Shuman said.

      Diving into the World of Fire

      Shuman’s PhD program focused on boreal forest dynamics across Russia, examining how the forest changes in response to climate change and wildfire. During her research, she worked mainly with scientists from Russia, Canada, and the US through the Northern Eurasia Earth Science Partnership Initiative (NEESPI), where Shugart served as the NEESPI Chief Scientist. “The experience of having a highly supportive mentor, being a part of the NEESPI community, and working alongside other inspiring female scientists from across the globe helped me to stay motivated within my own research,” Shuman said.

      After completing her PhD, Shuman wanted to become involved in collaborative science with a global impact, which led her to the National Center for Atmospheric Research (NCAR). There, she spent seven years working as a project scientist on the Next Generation Ecosystem Experiment NGEE-Tropics) on a dynamic vegetation model project called FATES (Functionally Assembled Terrestrial Ecosystem Simulator). As part of the FATES team, Shuman used computer modeling to test vegetation structure and function in tropical and boreal forests after wildfires, and was the lead developer for updating the fire portion of the model.

      This figure shows fire characteristics from an Earth system model that uses vegetation structure and interactive fire. The FATES model captures the fire intensity associated with burned land and grass growth in the Southern Hemisphere. Shuman et al. 2024 GMD Fire has also played a powerful role in Shuman’s personal life. In 2021, the Marshall Fire destroyed neighborhoods near her hometown of Boulder, Colorado, causing over $513 million of damage and securing its place as the state’s most destructive wildfire. Despite this, Shuman is determined to not live in fear. “Fire is part of our lives, it’s a part of the Earth system, and it’s something we can plan for. We can live more sustainably with fires.” The way to live safely in a fire-inclusive ecosystem, according to Shuman, is to develop ways to accurately track and forecast wildfires and smoke, and to respond to them efficiently: efforts the fire community is continuously working on improving.

      The Fire Science Community

      Collaboration is a critical element of wildland fire management. Fire science is a field that involves practitioners such as firefighters and land managers, but also researchers such as modelers and forecasters; the most effective efforts, according to Shuman, come when this community works together. “People in fire science might be out in the field and carrying a drip torch and marching along in the hilltops and the grasslands or be behind a computer and analyzing remote sensing data,” Shuman said. “We need both pieces.”

      Protecting communities from wildfire impacts is one of the most fulfilling aspects of Shuman’s career, and a goal that unites this community. “Fire research poses tough questions, but the people who are thinking about this are the people who are acting on it,” Shuman said. “They are saying, ‘What can we do? How can we think about this? What information do we need? What are the questions?’ It’s a special community to be a part of.”

      Looking to the Future of Fire

      Currently at NASA Ames Research Center, Shuman is the Project Scientist for FireSense: a project focused on delivering NASA science and technology to practitioners and operational agencies. Shuman acts as the lead for the project office, identifying and implementing tools and strategies. Shuman still does ecosystem modeling work, including implementing vegetation models that forecast the impact of fire, but also spends time traveling to active fires across the country so she can help partners implement NASA tools and strategies in real time.

      FireSense Project Scientist Jacquelyn Shuman stands with Roger Ottmar (United States Forest Service), surveying potential future locations for prescribed burns in Fishlake National Forest. NASA Ames/Milan Loiacono
      “Right now, many different communities are all recognizing that we can partner to identify the best path forward,” Shuman said. “We have an opportunity to use everyone’s strengths and unique perspectives. It can be a devastating thing for a community and an ecosystem when a fire happens. Everyone is interested in using all this collective knowledge to do more, together.”


      Written by Molly Medin, NASA Ames Research Center

      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      General Earth Science Earth Science Division Explore More
      4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
      Article 18 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 19 hours ago 7 min read What is a Coral Reef?
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artemis II crew members (left to right) Reid Wiseman, Christina Koch, and Jeremy Hansen share information about themselves and their mission during a town hall at NASA’s Glenn Research Center in Cleveland. Credit: NASA/Sara Lowthian-Hanna  Three of the four astronauts who will venture around the Moon on Artemis II, the first crewed flight paving the way for future lunar surface missions, visited NASA’s Glenn Research Center in Cleveland, Sept. 10-11. NASA Glenn is an integral part of the development of the Orion spacecraft and a leader in propulsion, power, and communications research. 
      Commander Reid Wiseman  and Mission Specialists  Christina Koch and Jeremy Hansen (Canadian Space Agency) discussed their upcoming mission and hosted a question-and-answer session during town hall events at Lewis Field in Cleveland and NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Victor Glover, who was unable to attend, is the pilot and fourth crew member. Both events included tours and recognition of employees who have contributed to the success of Artemis missions.  
      Artemis II crew members Reid Wiseman, Christina Koch, and Jeremy Hansen (left to right, wearing blue flight suits) and other NASA personnel look down into the stainless-steel vacuum chamber in the In-Space Propulsion Facility at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. This is the world’s only facility capable of testing full-scale upper stage launch vehicles and rocket engines under simulated high-altitude conditions.Credit: NASA/Sara Lowthian-Hanna  The Artemis II crew will lift off on an approximately 10-day mission from Launch Complex 39B at NASA’s Kennedy Space Center in Florida, blazing beyond Earth’s grasp atop the agency’s mega Moon rocket. The crew will check out Orion’s systems and perform a targeting demonstration test relatively close to Earth before venturing around the Moon.  
      Back to Newsletter Explore More
      1 min read Dr. Rickey Shyne Named Crain’s Notable Black Leader 
      Article 14 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago View the full article
    • By NASA
      6 min read
      NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle
      In a teleconference with reporters on Tuesday, representatives from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the international Solar Cycle Prediction Panel announced that the Sun has reached its solar maximum period, which could continue for the next year.
      The solar cycle is a natural cycle the Sun goes through as it transitions between low and high magnetic activity. Roughly every 11 years, at the height of the solar cycle, the Sun’s magnetic poles flip — on Earth, that’d be like the North and South poles swapping places every decade — and the Sun transitions from being calm to an active and stormy state.
      Visible light images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, Dec. 2019) versus solar maximum (right, May 2024). During solar minimum, the Sun is often spotless. Sunspots are associated with solar activity and are used to track solar cycle progress. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NASA/SDO Images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, December 2019) versus solar maximum (right, May 2024). These images are in the 171-angstrom wavelength of extreme ultraviolet light, which reveals the active regions on the Sun that are more common during solar maximum. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NASA/SDO




      NASA and NOAA track sunspots to determine and predict the progress of the solar cycle — and ultimately, solar activity. Sunspots are cooler regions on the Sun caused by a concentration of magnetic field lines. Sunspots are the visible component of active regions, areas of intense and complex magnetic fields on the Sun that are the source of solar eruptions.
      “During solar maximum, the number of sunspots, and therefore, the amount of solar activity, increases,” said Jamie Favors, director, Space Weather Program at NASA Headquarters in Washington. “This increase in activity provides an exciting opportunity to learn about our closest star — but also causes real effects at Earth and throughout our solar system.”
      The solar cycle is the natural cycle of the Sun as it transitions between low and high activity. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation — all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems — such as radio and GPS — and power grids on Earth.
      Credits: Beth Anthony/NASA Solar activity strongly influences conditions in space known as space weather. This can affect satellites and astronauts in space, as well as communications and navigation systems — such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity has led to increased aurora visibility and impacts on satellites and infrastructure in recent months.
      During May 2024, a barrage of large solar flares and coronal mass ejections (CMEs) launched clouds of charged particles and magnetic fields toward Earth, creating the strongest geomagnetic storm at Earth in two decades — and possibly among the strongest displays of auroras on record in the past 500 years.
      May 3–May 9, 2024, NASA’s Solar Dynamics Observatory observed 82 notable solar flares. The flares came mainly from two active regions on the Sun called AR 13663 and AR 13664. This video highlights all flares classified at M5 or higher with nine categorized as X-class solar flares.
      Credit: NASA “This announcement doesn’t mean that this is the peak of solar activity we’ll see this solar cycle,” said Elsayed Talaat, director of space weather operations at NOAA. “While the Sun has reached the solar maximum period, the month that solar activity peaks on the Sun will not be identified for months or years.”
      Scientists will not be able to determine the exact peak of this solar maximum period for many months because it’s only identifiable after they’ve tracked a consistent decline in solar activity after that peak. However, scientists have identified that the last two years on the Sun have been part of this active phase of the solar cycle, due to the consistently high number of sunspots during this period. Scientists anticipate that the maximum phase will last another year or so before the Sun enters the declining phase, which leads back to solar minimum. Since 1989, the Solar Cycle Prediction Panel — an international panel of experts sponsored by NASA and NOAA — has worked together to make their prediction for the next solar cycle.
      Solar cycles have been tracked by astronomers since Galileo first observed sunspots in the 1600s. Each solar cycle is different — some cycles peak for larger and shorter amounts of time, and others have smaller peaks that last longer.
      Sunspot number over the previous 24 solar cycles. Scientists use sunspots to track solar cycle progress; the dark spots are associated with solar activity, often as the origins for giant explosions — such as solar flares or coronal mass ejections — which can spew light, energy, and solar material out into space. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NOAA’s Space Weather Prediction Center “Solar Cycle 25 sunspot activity has slightly exceeded expectations,” said Lisa Upton, co-chair of the Solar Cycle Prediction Panel and lead scientist at Southwest Research Institute in San Antonio, Texas. “However, despite seeing a few large storms, they aren’t larger than what we might expect during the maximum phase of the cycle.”
      The most powerful flare of the solar cycle so far was an X9.0 on Oct. 3 (X-class denotes the most intense flares, while the number provides more information about its strength).
      NOAA anticipates additional solar and geomagnetic storms during the current solar maximum period, leading to opportunities to spot auroras over the next several months, as well as potential technology impacts. Additionally, though less frequent, scientists often see fairly significant storms during the declining phase of the solar cycle.
      The Solar Cycle 25 forecast, as produced by the Solar Cycle 25 Prediction Panel. Sunspot number is an indicator of solar cycle strength — the higher the sunspot number, the stronger the cycle. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NOAA’s Space Weather Prediction Center NASA and NOAA are preparing for the future of space weather research and prediction. In December 2024, NASA’s Parker Solar Probe mission will make its closest-ever approach to the Sun, beating its own record of closest human-made object to the Sun. This will be the first of three planned approaches for Parker at this distance, helping researchers to understand space weather right at the source.
      NASA is launching several missions over the next year that will help us better understand space weather and its impacts across the solar system.
      Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation. 
      NASA works as a research arm of the nation’s space weather effort. To see how space weather can affect Earth, please visit NOAA’s Space Weather Prediction Center, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts.
      By Abbey Interrante
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Sarah Frazier, NASA’s Goddard Space Flight Center, Greenbelt, Md.
      sarah.frazier@nasa.gov
      About the Author
      Abbey Interrante

      Share








      Details
      Last Updated Oct 15, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Science Sunspots The Sun The Sun & Solar Physics Explore More
      3 min read Eclipse Megamovie Coding Competition


      Article


      5 hours ago
      2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…


      Article


      4 days ago
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Sunspots



      Solar Storms and Flares


      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.


      Sun



      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By European Space Agency
      On 15 October 2024, ESA’s Euclid space mission reveals the first piece of its great map of the Universe, showing millions of stars and galaxies.
      View the full article
  • Check out these Videos

×
×
  • Create New...