Jump to content

Station Science 101: Studying DNA in Space


Recommended Posts

  • Publishers
Posted

Long-term space exploration exposes humans to radiation that can damage deoxyribonucleic acid or DNA, which carries the genetic information for our development and functioning. Conditions in space also affect the way the body repairs such damage, potentially compounding the risk. Research on the International Space Station studies DNA damage and repair using tools and techniques to sequence, analyze, and even edit DNA.

Those tools and techniques have been developed especially for use in space, which has unique safety considerations and where there are limits on the size and weight of equipment. This specialization has made this type of research possible and resulted in significant milestones in DNA research.

Rubins wears a black sweatshirt as she holds a small experiment tube and smiles at the camera. There are two laptops in front of her and equipment and wiring above her.
NASA astronaut Kate Rubins prepares a run of Biomolecule Sequencer experiment, which sequenced DNA in space for the first time.
NASA

In April 2016, ESA (European Space Agency) astronaut Tim Peake first amplified DNA using the first polymerase chain reaction (PCR) device sent to station, called miniPCR.1 An important step in the process of analyzing genetic material, amplification involves making multiple copies of a segment of DNA. NASA astronaut Kate Rubin sequenced DNA in space for the first time in August 2016 using a commercial off-the-shelf device called MinION.2 In August 2017, NASA astronaut Peggy Whitson combined the miniPCR and MinION to identify the first unknown microbe from the station, validating a process that could make possible in-flight identification of microbes and diagnosis of infectious diseases on future missions.3 In August 2018, NASA astronaut Ricky Arnold first used a “swab to sequencer” DNA sequencing method that eliminates the need to culture bacteria before analysis.4

Arnold, facing the camera, wears a blue shirt, glasses, and light blue gloves. His right hand holds the miniPCR on the work bench. A laptop and video camera are visible behind him.
NASA astronaut Ricky Arnold processes DNA from swabs of space station surfaces to identify microbes.
NASA

Another milestone, reached in May 2019, was the first CRISPR gene editing on station, performed by NASA astronaut Christina Koch.5 CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. These are short, repeated sequences of DNA noted in bacteria with viral DNA sequences in between them. Bacteria transcribe the viral DNA sequences to RNA, which then guides a specific protein to the viral DNA and cuts it – creating a line of defense against invading viruses. Researchers can create a guide RNA to be specific to any part of a genome. This means CRISPR can be used to create precise breaks in a known location of a gene, resulting in simplified gene editing.

A program called Genes in Space has employed these advances for multiple investigations. A collaboration between Boeing and miniPCR bio sponsored by the ISS National Lab and New England Biolabs, this program is a national contest where students in grades 7 through 12 design DNA analysis experiments for the space station.

Genes in Space-6 used CRISPR to successfully generate breaks in the DNA of a common yeast, allow for repair of the breaks, and sequence the patched-up DNA to determine whether its original order was restored, all during spaceflight.5 Performing the entire process in space – rather than causing a break, freezing the sample, and sending it into space to repair –provided researchers insight into the type of repair mechanism used. Organisms repair DNA breaks in one of two major ways. One method may add or delete bases while the other rejoins the strands without changing the DNA sequence. Understanding whether one type of repair is less error-prone has important implications for protecting crew members.

Koch faces a work bench and concentrates on sample tubes in her left hand. She is wearing a headset, gloves, and glasses.
NASA astronaut Christina Koch works on the Genes in Space-6 experiment.
NASA

Genes in Space-5 represented an important step toward a rapid, safe, and cost-effective way to examine the immune system during spaceflight. This investigation also provided proof of concept for simultaneously amplifying multiple DNA sequences in space, expanding the possibilities for in-flight research and health monitoring.

Genes in Space-10 validated a method for measuring and analyzing the length of DNA fragments known as telomeres using fluorescence. Telomeres, cap-like genetic structures at the end of chromosomes that protect them from damage, shorten with age but have been found to lengthen in space. Analyzing telomere length could help determine the mechanism behind this effect. Results from the investigation also could provide a way to measure DNA and to diagnose genetic-based medical problems during spaceflight. Sending DNA samples back to Earth for analysis can cause the samples to degrade and is not feasible for future long-duration missions. Insight into why telomeres lengthen in space could lead to a better understanding of their role in human aging as well.

Having an entire molecular laboratory in space greatly increases what scientists can do. The ability to analyze DNA, study how it is damaged and repaired in space, and make specific changes to it enables more complex research. Identifying unknown organisms and changes in known ones is key to keeping crew members safe on future missions.

Melissa Gaskill
International Space Station Program Science Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

Citations

1 Boguraev, A. S. et al. Successful amplification of DNA aboard the International Space Station. NPJ Microgravity 3, 26, doi:10.1038/s41526-017-0033-9 (2017).

2 Castro-Wallace, S. L. et al. Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Sci Rep 7, 18022, doi:10.1038/s41598-017-18364-0 (2017).

3 Burton, A. S. et al. Off Earth Identification of Bacterial Populations Using 16S rDNA Nanopore Sequencing. Genes (Basel) 11, doi:10.3390/genes11010076 (2020).

4 Stahl-Rommel, S. et al. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes (Basel) 12, doi:10.3390/genes12010106 (2021).

5 Stahl-Rommel, S. et al. A CRISPR-based assay for the study of eukaryotic DNA repair onboard the International Space Station. PloS one 16, e0253403, doi:10.1371/journal.pone.0253403 (2021).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By European Space Agency
      Image: Group photo taken at the General Assembly on Defence, Space and Cybersecurity, held on Friday 12 September 2025, at ESRIN, ESA’s Centre for Earth Observation Programmes in Italy. 
      The event was organised by the European Parliament and the European Commission, in collaboration with the European Space Agency, to promote dialogue between European and national decision-makers and industry leaders. Representatives from major European entities debated the future of the European Union, which is facing unprecedented challenges since the postwar period, in an increasingly complex geopolitical context. Participants examined Europe’s needs in key sectors such as space, cybersecurity, and defence, within the broader context of the Atlantic Alliance. Acting at the European level, as demonstrated by projects like Galileo, EGNOS, and Copernicus, not only brings extraordinary added value in terms of innovation, industrial competitiveness, economies of scale, and spending efficiency, but also strengthens Europe’s strategic autonomy, the security of its citizens, and the protection of its critical infrastructure.
      The group included experts from major European entities, including: Andrius Kubilius, European Commissioner for Defence and Space; Adolfo Urso, Italian Minister of Enterprises and Made in Italy; Matteo Piantedosi, Italian Minister of the Interior; Gen. B. Luigi Vinciguerra, Brigade General of the Guardia di Finanza – Head of the III Operations Department, General Command; Josef Aschbacher, Director General of the European Space Agency; Simonetta Cheli, Director of Earth Observation Programmes and Head of ESRIN; Carlo Corazza, Head of the European Parliament Office in Italy; Ammiraglio Giuseppe Cavo Dragone, Chairman of the NATO Military Committee; Teodoro Valente, President of the Italian Space Agency (ASI); Hans de Vries, Chief Cybersecurity and Operations Officer (COO) - ENISA; Fabio di Stefano, Communications at the European Parliament in Italy.
      Watch here a replay of ESA Director General's intervention and find the transcript of his speech.
      View the full article
    • By European Space Agency
      Image: Part of the Gibson Desert in Western Australia is featured in this image, captured by the Φsat-2 mission in June 2025. View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...