Jump to content

NASA Spinoffs Feature NASA Stennis Developed Technologies


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Space Launch System (SLS) rocket, capped by the Orion spacecraft, sits on the mobile launcher at Launch Complex 39B at NASA’s Kennedy Space Center in Florida
NASA’s 2024 Spinoff publication features more than 40 medical and other commercialized technologies using the agency’s research and development expertise. It also features new technology developed at various agency centers, including NASA’s Stennis Space Center.
NASA

As NASA innovates for the benefit of all, what the agency develops for exploration has the potential to evolve into other technologies with broader use here on Earth. Many of those examples are highlighted in NASA’s annual Spinoff book including dozens of NASA-enabled medical innovations, as well other advancements in 3D printing, robots, and brake designs.

This year’s publication also features a section highlighting technologies developed at agency centers such as NASA’s Stennis Space Center near Bay St. Louis, Mississippi, that are available for use by various industries.

NASA’s 2024 Spinoff highlights more than 40 medical and other commercialized technologies using the agency’s research and development expertise.

“As we continue to push new frontiers and do the unimaginable, NASA’s scientists and engineers are constantly innovating and advancing technologies,” said NASA Administrator Bill Nelson. “A critical part of our mission is to quickly get those advances into the hands of companies and entrepreneurs who can use them to grow their businesses, open new markets, boost the economy, and raise the quality of life for everyone.”

One of the featured medical innovations is the first wireless arthroscope – a small tube carrying a camera inserted into the body during surgery – to receive clearance from the U.S. Food and Drug Administration, which benefited from NASA’s experience with spacesuits and satellite batteries. Commercialized technologies for diagnosing illnesses like the coronavirus, hepatitis, and cancer have also stemmed from NASA’s space exploration and science endeavors. Even certain types of toothpaste originated from the agency’s efforts to grow crystals for electronics.

The book also features several technologies NASA has identified as promising future spinoffs and information on how to license agency tech. Since the 1970s, thousands of NASA technologies have found their way into many scientific and technical disciplines, impacting nearly every American industry.

Additional 2024 Spinoff highlights include developments under NASA’s Artemis campaign, like a small, rugged video camera used to improve aircraft safety and a new method for detecting defects or damage in composite materials. Meanwhile, another spinoff story details the latest benefits of fuel cell technology created more than 50 years ago for Apollo, which is now poised to support terrestrial power grids based on renewable energy.

The book also features other notable spinoffs like:

NASA Stennis items included in the new publication are:

  • Remote Sensing Toolkit. The NASA Spinoff 2024 publication describes the remote sensing toolkit as an online portal that offers easy access to NASA Earth-observation data. NASA’s Technology Transfer program at NASA Stennis developed the online resource to promote wider use of the agency’s freely available remote sensing data and software to work with it. It helps users find, analyze, and use the most relevant data for projects such as precision agriculture and crop forecasting, conservation and resource management, and natural disaster planning and response. The free and easy-to-use toolkit includes data from more than 20 satellites and missions.
  • Cryogenic Butterfly Cam Valve. According to the NASA Spinoff 2024 book, the unique butterfly valve designed at NASA Stennis provides “no-leak” performance in a broad range of temperatures. The NASA Stennis valve addresses a key disadvantage of current butterfly valves, which require the butterfly disc to establish a tight seal at exactly 90 degrees. Providing additional torque to the valve may cause the disc to rotate beyond 90 degrees, allowing fluid flow. Current butterfly valves also usually fail leakage tests when used with liquid nitrogen, a key cryogenic in propulsion testing. The simple NASA Stennis design remedies these issues by allowing rotation of the valve shaft, enabling the disc to slide until it seals tightly despite temperature changes. The NASA Stennis valve can be used in various aerospace, natural gas, and cryogenic plant systems.

“As NASA’s longest continuously running program, we continue to increase the number of technologies we license year-over-year while streamlining the development path from the government to the commercial sector,” said Daniel Lockney, Technology Transfer program executive at NASA Headquarters in Washington. “These commercialization success stories continually prove the benefits of transitioning agency technologies into private hands, where the real impacts are made.”

Spinoffs are part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. Tech Transfer is charged with finding broad, innovative applications for NASA-developed technology through partnerships and licensing agreements, ensuring agency investments benefit the nation and the world.

To read or download the digital version of the latest issue of Spinoff, visit:

https://spinoff.nasa.gov/

For information about NASA Stennis Space Center, visit:

www.nasa.gov/centers/stennis/

Share

Details

Last Updated
Feb 01, 2024
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
    • By NASA
      Credit: NASA NASA has selected Sierra Lobo, Inc. of Fremont, Ohio, to provide for test operations, test support, and technical system maintenance activities at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      The NASA Stennis Test Operations Contract is fixed-price, level-of-effort contract that has a value of approximately $47 million. The performance period begins July 1, 2025, and extends three years, with a one-year base period and two one-year option periods.
      The contract will provide test operations support for customers in the NASA Stennis test complex. It also will cover the operation and technical systems maintenance of the high-pressure industrial water, high-pressure gas, and cryogenic propellant storage support areas, as well as providing welding, fabrication, machining, and component processing capabilities.
      NASA Stennis is the nation’s largest propulsion test site, with infrastructure to support projects ranging from component and subscale testing to large engine hot fires. Researchers from NASA, other government agencies, and private industry utilize NASA Stennis test facilities for technology and propulsion research and developmental projects.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      C. Lacy Thompson
      Stennis Space Center, Bay St. Louis, Mississippi
      228-363-5499
      calvin.l.thompson@nasa.gov
      Share
      Details
      Last Updated Nov 21, 2024 LocationNASA Headquarters Related Terms
      Stennis Space Center NASA Centers & Facilities Stennis Test Facility and Support Infrastructure View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Energy Program Manager for Facility Projects Wayne Thalasinos, left, stands with NASA Stennis Sustainability Team Lead Alvin Askew at the U.S. Department of Energy in Washington, D.C., on Oct. 30. The previous day, the Department of Energy announced NASA Stennis will receive a $1.95 million grant for an energy conservation project at the south Mississippi center. The Stennis Sustainability Team consists of NASA personnel and contract support. NASA members include Askew, Missy Ferguson and Teenia Perry. Contract members include Jordan McQueen (Synergy-Achieving Consolidated Operations and Maintenance); Michelle Bain (SACOM); Matt Medick (SACOM); Thomas Mitchell (SACOM); Lincoln Gros (SACOM), and Erik Tucker (Leidos). NASA Stennis NASA’s Stennis Space Center has been awarded a highly competitive U.S. Department of Energy grant to transform its main administration building into a facility that produces as much renewable energy as it uses.
      Following an Oct. 29 announcement, NASA Stennis, located near Bay St. Louis, Mississippi, will receive $1.95 million through the Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Program. The grant will fund installation of a four-acre solar panel array onsite that can generate up to 1 megawatt of electricity.
      “This is a flagship project for our NASA center,” said NASA Stennis Director John Bailey. “It will provide renewable energy to help reduce our carbon footprint, contributing to NASA’s agencywide goal of zero greenhouse gas emissions by 2030.”
      The AFFECT Program awards grants to help the federal government achieve its goal of net-zero greenhouse gas emissions by all federal buildings by 2045. More than $1 billion in funding proposals was requested by federal agencies for the second, and final, phase of the initiative. A total of $149.87 million subsequently was awarded for 67 energy conservation and clean energy projects at federal facilities across 28 U.S. states and territories and in six international locations. NASA Stennis is the only agency in Mississippi to receive funding.  
      The site’s solar panel array will build on an $1.65 million energy conservation project already underway at the south Mississippi site to improve energy efficiency. The solar-generated electricity can be used in a number of ways, from powering facility lighting to running computers. The array also will connect to the electrical grid to allow any excess energy to be utilized elsewhere onsite.
      “This solar panel addition will further enhance our energy efficiency,” said NASA Stennis Sustainability Team Lead Alvin Askew. “By locating the solar photovoltaic array by the Emergency Operations Center, it also has potential future benefits in providing backup power to that facility during outages.”
      The NASA Stennis proposal was one of several submitted by NASA centers for agency consideration. Following an agency review process, NASA submitted multiple projects to the Department of Energy for grant consideration.
      “This was a very competitive process, and I am proud of the NASA Stennis Sustainability Team,” NASA Stennis Center Operations Director Michael Tubbs said. “The team’s hard work in recent years and its commitment to continuous improvement in onsite energy conversation laid the groundwork to qualify for this grant. Mr. Askew, in particular, continues to be a leader in creative thinking, helping us meet agency sustainability goals.”
      The NASA Stennis administration building was constructed in 2008 as a Leadership in Energy and Environmental Design-certified, all-electric facility and currently has net-zero emissions.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 1 day ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 1 day ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 1 day ago Share
      Details
      Last Updated Nov 14, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Keep Exploring Discover More Topics From NASA Stennis
      Multi-User Test Complex
      Propulsion Test Engineering
      NASA Stennis Front Door
      NASA Stennis Media Resources
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      NASA engineers conduct a test of the liquid oxygen/liquid methane Morpheus lander engine HD4B on the E-3 Test Stand at NASA’s Stennis Space Center during the week of Sept. 9, 2013. The fourth-generation Project Morpheus engine was a prototype vertical takeoff and landing vehicle designed to advance innovative technologies into flight-proven systems that may be incorporated into future human exploration missions. NASA/Stennis The work of NASA has fueled commercial spaceflight for takeoff – and for many aerospace companies, the road to launch begins at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. 
      Already the nation’s largest propulsion test site and a leader in working with aerospace companies to support their testing needs, NASA Stennis aims to continue growing its commercial market even further.  
      “The aerospace industry is expanding rapidly, and we are here to support it,” said NASA Stennis Director John Bailey. “NASA Stennis has proven for more than two decades that we have the versatile infrastructure and reliable propulsion test experts to meet testing needs and accelerate space goals for a whole range of customers.” 
      The central hub for meeting those needs at the south Mississippi center is the E Test Complex. It features four stands with 12 test cells capable of supporting a range of component and engine test activities. NASA operates the E-1 Test Stand with four cell positions and the E-3 Test Stand with two cells. Relativity Space, based in Long Beach, California, leases the E-2 and E-4 stands to support some of its test operations. 
      Operators conduct a hot fire for Relativity Space’s Aeon R thrust chamber assembly on the E-1 Test Stand at NASA’s Stennis Space Center in 2024.  NASA/Stennis Virgin Orbit, a satellite-launch company, conducts a Thrust Chamber Assembly test on the E-1 Test Stand at NASA’s Stennis Space Center in 2021. The company partnered with NASA Stennis to conduct hot fire tests totaling a cumulative 974.391 seconds.NASA/Stennis Launcher’s 3D-printed Engine-2 rocket engine completes a 5-second hot fire of its thrust chamber assembly on Aug. 20, 2021, at NASA’s Stennis Space Center. The company was just one of several conducting test projects on site in 2021. Launcher, Virgin Orbit, Relativity Space, and L3Harris (formerly known as Aerojet Rocketdyne) made significant strides toward their space-project goals while utilizing NASA Stennis infrastructure.Launcher/John Kraus Photography An image from November 2021 shows a subscale center body diffuser hot fire on the E-3 Test Stand during an ongoing advanced diffuser test series at NASA’s Stennis Space Center.  NASA/Stennis A team of engineers from NASA, Orbital Sciences Corporation and L3Harris (formerly known as Aerojet Rocketdyne) conduct an engine acceptance test on the E-1 Test Stand at NASA’s Stennis Space Center on Jan. 18, 2013. The successful test of AJ26 Engine E12 continued support of Orbital Sciences Corporation as the company prepared to provide commercial cargo missions to the International Space Station.  NASA/Stennis Developed during the 1990s and early 2000s, the E Test Complex can deliver various propellants and gases at high and low pressures and flow rates not available elsewhere. The versatility of the complex infrastructure and test team allows it to support projects for commercial aerospace companies, large and small. NASA Stennis also provides welding, machining, calibration, precision cleaning, and other support services required to conduct testing.  
      “NASA Stennis delivers exceptional results in a timely manner with our capabilities and services,” said Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office. “Our commercial partnerships and agreements have proven to be true win-win arrangements. NASA Stennis is where customers have access to unique NASA test support infrastructure and expertise, making it the go-to place for commercial propulsion testing.”  
      Companies come to the south Mississippi site with various needs. Some test for a short time and collect essential data. Others stay for an extended period. The stage of development and the particular test article, whether a component or full engine, determine where testing takes place within the E Complex. 
      NASA Stennis also offers a variety of test agreements. Companies may lease a stand or area and perform its own test campaign. They also may team with NASA Stennis engineers and operators to form a blended test team. And in some cases, companies will turn over the entirety of test work to the NASA Stennis team. Current companies conducting work at NASA Stennis include: Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. They join a growing list who conducted earlier test projects in the complex, including SpaceX, Stratolaunch, Virgin Orbit, and Orbital Sciences Corporation. 
      In addition, three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite. 
      “We may work with a customer brand new to the field, so we help them figure out how to build their engine,” said Chris Barnett-Woods, E-1 electrical lead and instrumentation engineer. “Another customer may know exactly what they want, and we support them to make it happen. We focus on customer need. Given our expertise, we know how testing needs to be conducted or can figure it out quickly together, which can help our customer save money toward a successful outcome.” 
      NASA engineers conduct a test of a methane-fueled 2K thruster on the E-3 Test Stand at NASA’s Stennis Space Center during a four-day span in May 2015. NASA/Stennis NASA records a historic week Nov. 5-9, 2012, conducting 27 tests on three different rocket engines/components across three stands in the E Test Complex at NASA’s Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 image is from an October 2012 test and is provided courtesy of Blue Origin. Other images are from tests conducted the week of Nov. 5, 2012. NASA/Stennis Operators at the E-2 Test Stand at NASA’s Stennis Space Center conduct a test of the oxygen preburner component developed by SpaceX for its Raptor rocket engine on June 9, 2015. NASA/Stennis Operators conduct a hot fire on the E-3 Test Stand during ongoing advanced diffuser test series in October 2015 at NASA’s Stennis Space Center. Subscale testing was conducted at NASA Stennis to validate innovative new diffuser designs to help test rocket engines at simulated high altitudes, helping to ensure the engines will fire and operate on deep space missions as needed.  NASA/Stennis NASA’s Stennis Space Center and  L3Harris (formerly known as Aerojet Rocketdyne) complete a successful round of AR1 preburner tests on Cell 2 of the E-1 Test Stand during the last week of June 2016. The tests successfully verified key preburner injector design parameters for the company’s AR1 engine being designed to end use of Russian engines for national security space launches. NASA/Stennis Capabilities to benefit NASA and the aerospace industry have grown since the center entered its first commercial partnership in the late 1990s. The test team also has grown in understanding the commercial approach, and the center has committed itself to adapting and streamlining its business processes. 
      “Time-to-market is key for commercial companies,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “They want to test as efficiently and economically as possible. Our goal is to meet them where they are and deliver what they need. And that is exactly what we focus our efforts on.”
      As stated in the site’s latest strategic plan, the goal is to operate as “a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry.” To that end, the site is innovating its operations, modernizing its services, and demonstrating it is the best choice for propulsion testing. 
      “NASA Stennis is open for business as the preferred propulsion provider for aerospace companies,” Bailey said. “Companies across the board are realizing they can achieve their desired results at NASA Stennis.”  
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
  • Check out these Videos

×
×
  • Create New...