Jump to content

The Marshall Star for January 31, 2024


NASA

Recommended Posts

  • Publishers
26 Min Read

The Marshall Star for January 31, 2024

a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27 in the background as seen across an empty field

Marshall Commemorates NASA’s Day of Remembrance

By Celine Smith

Team members across NASA’s Marshall Space Flight Center congregated Jan. 25 in the lobby of Building 4221 to observe NASA’s Day of Remembrance.

Each January, the agency pauses to honor members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the crews of Apollo 1 and space shuttles Challenger and Columbia.

Bill Hill, left, director of Marshall’s Safety and Mission Assurance Directorate, observes Larry Leopard, Marshall associate director, technical, lighting a candle in honor of those lost at the Day of Remembrance ceremony.
Bill Hill, left, director of Marshall’s Safety and Mission Assurance Directorate, observes Larry Leopard, Marshall associate director, technical, lighting a candle in honor of those lost at the Day of Remembrance ceremony.
NASA/Krisdon A. Manecke

The center’s ceremony included speeches from Larry Leopard, Marshall associate director, technical, and Bill Hill, director of Marshall’s Safety and Mission Assurance Directorate.

Leopard spoke about his memories of Challenger and Columbia’s influence on his work ethic at Marshall.

“With every failure and loss, it is up to those who remain to learn and grow from those who have gone on before us to prevent the same mistakes as we push on to new heights,” Leopard said.

Hill emphasized the importance of how a strong safety culture at Marshall is vital to mission success. He also encouraged Marshall team members to attend center safety workshops and complete training to eliminate as much risk as possible on future missions.

tde-0612.jpg?w=2048
From left, Shannon Segovia, Marshall’s deputy director of communications, Hill, Leopard, and acting Center Director Joseph Pelfrey gather around the ceremonial wreath and candle.
NASA/Krisdon A. Manecke

“Seventeen of our brave astronauts paid the ultimate price for our failures,” Hill said. “Learning from our experience, we must become more humble, more dedicated to doing things right, more vigilant, questioning the process at every turn.”

After their speeches, a candle was lit in memory of lives lost in the pursuit of exploration and discovery along with a moment of silence.

“The accidents we’ve had in the past are reminders of how hard, dangerous, and risky space exploration is,” acting Center Director Joseph Pelfrey said afterward. “They serve as a reminder for us to be diligent at our jobs. As we bring younger generations into the workforce, we have to continue to teach them as well so that as a community we don’t repeat these mistakes.”

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

National Mentoring Month: Troubleshooting with NASA’s Aaron Comis and Brad Solomon

By Jessica Barnett

Mentorship is a valuable partnership that benefits both mentors and mentees. Like any relationship, it also comes with its fair share of challenges.

Those challenges can include misaligned expectations, miscommunications, time constraints, lack of engagement, and burnout. Overcoming those challenges is possible, but it takes commitment, communication, and flexibility from both parties.

Official Portrait: Brad Solomon
Brad Solomon is the chief information officer in the Management of Information Technology office at Marshall Space Flight Center. Solomon signed up for the Systems Engineering Mentoring program to help younger members of NASA’s workforce as they navigate their lives and careers.
NASA/Danielle Burle

Those concepts are all too familiar to Brad Solomon and Aaron Comis, who were paired as mentor and mentee respectively. Solomon, who currently serves as chief information officer for NASA’s Marshall Space Flight Center, said he signed up for the systems engineering mentoring program and was purposefully paired with Comis, a former Pathways intern from Johnson Space Center who now works as chief digital engineer at Goddard Space Flight Center.

“We found we had more in common than we knew, as both of us were involved in the digital transformation initiative led by Jill Marlowe, and that our challenges at Marshall and Goddard in that effort were very common,” Solomon said.

Aaron Comis
Aaron Comis serves as chief digital engineer in the Engineering and Technology Directorate at Goddard Space Flight Center. Comis said mentors have been a major influence throughout his career, from his days as an intern at Johnson Space Center through today.
NASA

Being at different NASA centers meant the potential for additional challenges, but it also provided additional perspective and opportunities for the pair during their mentorship journey. As NASA wraps up its celebration of this year’s Mentoring Month, Comis and Solomon sat down to offer their insight into how mentorship has influenced their lives and careers, as well as their tips for helping things go right and their advice for when things go wrong.

Question: What does mentorship mean to you?

Comis: To me, mentorship is a judgment-free relationship between peers that provides a safe space to discuss life with a focus on relating conversation back to a specific topic, whether it be professional, educational, personal, etc. We all eat, sleep, win, lose, and face challenges. The only constant is everything relating back to life.

Solomon: As a mentor, it means inspiring and helping create the next generation of leaders who will carry on the NASA legacy. I was fortunate to be part of the construction of ISS (International Space Station) and the Space Shuttle Program support, but the days of major NASA programs at the heart of the NASA mission are largely over, given the growth of the commercial space sector. More than ever, we need an innovative workforce adept at modern engineering techniques. With over 700 new NASA employees at Marshall since the pandemic began, all of us should feel obligated to help launch their young careers.

Question: What impact has mentorship had on you and your career?

Comis: Mentors have played a huge, albeit unassuming, role throughout my career, as early as my time at Johnson Space Center as a Pathways intern. My mentors throughout the years have provided me with a safe space to ask questions that I wasn’t comfortable with asking publicly, supported me through hard times, and celebrated big wins with me. I honestly believe my career wouldn’t be as successful or fun without the many mentors who helped me along the way.

Solomon: We all can look back at our careers and see the handful of leaders and conversations that changed the trajectory and propelled our careers. I had the privilege of being part of a Boeing program in the early 1990s that provided excellent leadership training and the opportunity to hear from aerospace leaders. Jonathan Pettus and Neil Rodgers instilled project management discipline and tireless work ethics in the implementation of NASA’s first enterprise financial management systems. Being part of an enterprise IT source evaluation board gave me opportunities to work with leaders like Byron Butler and Walt Melton, who taught me how to read and appreciate precision in contracting. Without mentors like these, I would not have been prepared for promotion opportunities when they were presented.

Question: How do you handle potential conflicts or disagreements to ensure a constructive resolution?

Comis: My role at Goddard is focused on change management, which can be a challenging role. If I come across potential conflicts or disagreements, I start with self-evaluation and attempt to take a step back from the situation. Did I communicate my intended message clearly and effectively? Was it possible that the intended message wasn’t understood? If the topic was the issue, not the communication, then it helps to have trusted mentors from all walks of life. This way, there is a better chance of achieving a constructive resolution in some form. Geographic separation – for example, being at different NASA centers – also helps with discussing certain sensitive topics, since this provides an additional layer of privacy and protection for everyone and ensures objective mentorship.

Solomon: That’s such an important trait in an effective leader. First, never take any criticism or disagreement personally, even when it is delivered with animus. There are always reasons behind it, and it may not have anything to do with you. Second, set aside all emotion, and see the issue as a roadblock – first, to a successful personal relationship, then to the mission. You must address the lack of trust before you can solve the problem. Do not hesitate to insert humor and self-deprecation to reduce tension. That will make addressing trust and the issue at hand easier. Finally, always start a hard conversation by restating and affirming the validity of the other person’s position (seek first to understand). This way, you are at least on neutral ground to start the difficult conversation.

Question: How would you suggest a mentor or mentee address differing expectations?

Comis: Expectations are key to a successful mentorship and should be addressed during the very first mentor/mentee interaction, starting with, ‘Why do you want to be a mentor/mentee, and what do you hope to gain from this experience?’ This is something that I learned from my most recent formal mentorship experience that I intend on carrying forward with my future mentor/mentee relationships.

Solomon: All mentor/mentee initial meetings should start with a statement of expectations from the mentee. As mentor, do not critique the statement. Treat it as the starting point for the conversation. Mentors should listen, affirm, then add to the expectation with additional potential directions in which the discussions can go. Save additional guidance for future meetings. Instead, get to know each other. Where is the mentee in their career? What are their aspirations? Why? What do they enjoy doing outside of work? At the end of the meeting, set the mentoring agenda for the next meeting.

Question: What advice do you have for someone else who wants to find or be a mentor?

Comis: Take the plunge! Becoming a mentor or mentee can be challenging, since it involves opening yourself up, whether by asking for help or offering help to someone else’s real and ongoing challenges, but it’s also hugely rewarding. Of course, it’s important to get to know someone before unloading your problems onto them, but at a certain point, there’s only one way to continue to establish the relationship, and that’s through trust. Ideally, have multiple mentors throughout your career, some local and some who intentionally are not local. This way, for more sensitive issues, you have an added layer of separation for peace of mind. I’d recommend everyone look for someone you already trust (for a potential mentor) or someone you see or know of who might be struggling and offer a helping hand (as a potential mentor for them). You never know how additional perspective might help you overcome challenges you weren’t even aware you had!

Solomon: To the mentor: First, there is no wrong way to do this. Don’t worry about meeting an expectation. It’s best to just be yourself and be genuine. Be present in the discussions, not distracted. Reschedule if you have a scheduling conflict. It helps if there is an affinity between the mentor and mentee to begin with, so work needs to be done to effectively match the two. If you are not right for each other, terminate after the first session and take action to help find a better match. Take good notes. You might want to consider a separate notebook for the engagement, so you can look back on notes from the past session. Mentees are opening themselves to you, so be trustworthy. Remember the last conversation and bring it forward to the next one. Be willing to share about yourself as well.

To the mentee: Be honest and open. You get out only what you are willing to invest. This means you will be out of your comfort zone. Don’t worry; it’s supposed to feel uncomfortable at times. Don’t be afraid to ask questions or raise uncomfortable questions, because everyone has been at your point and gone through similar experiences in their careers. Know that your time will come when you will be the mentor – perhaps sooner than you expect.

Editor’s note: This is the third in a Marshall Star series during National Mentoring Month in January. Marshall team members can learn more about the benefits of mentoring on Inside Marshall.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Marshall Team Supports Space Night with the Huntsville Havoc

NASA’s Marshall Space Flight Center joined the Huntsville Havoc for Space Night. The sold-out Jan. 26 game featured more than 4,900 fans for a themed hockey game designed to celebrate Huntsville’s robust aerospace community.

Marshall team member Michael Allen shares details about the IXPE mission with fans Jan. 26 at the Huntsville Havoc’s Space Night.
Marshall team member Michael Allen shares details about the IXPE mission with fans Jan. 26 at the Huntsville Havoc’s Space Night.
NASA/Taylor Goodwin

Thousands of space and hockey fans enjoyed exhibits and outreach provided by Marshall team members from across the center, including the Centennial Challenges Program; IXPE (Imaging X-ray Polarimetry Explorer); Technology Demonstration Missions; and SLS (Space Launch System) Program. 

Huntsville Havoc mascot, Rukus, poses in front of NASA exhibits at Space Night.
Huntsville Havoc mascot, Rukus, poses in front of NASA exhibits at Space Night.
NASA/Taylor Goodwin
Marshall team member Savannah Bullard shares details of the Centennial Challenges Program with Space Night attendees.
Marshall team member Savannah Bullard shares details of the Centennial Challenges Program with Space Night attendees.
NASA/Taylor Goodwin

› Back to Top

NASA Marks Halfway Point for Artemis Moon Rocket Engine Certification Series

NASA completed the sixth of 12 scheduled RS-25 engine certification tests in a critical series for future flights of the agency’s SLS (Space Launch System) rocket as engineers conducted a full-duration hot fire Jan. 27 at NASA’s Stennis Space Center.

The current series builds on previous hot fire testing conducted at NASA Stennis to help certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3 Harris Technologies company. The new engines will help power NASA’s SLS rocket on future Artemis missions to the Moon and beyond, beginning with Artemis V.

a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27 in the background as seen across an empty field
NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all.
NASA/Danny Nowlin

Operators fired the RS-25 engine on the Fred Haise Test Stand for almost eight-and-a-half minutes (500 seconds) – the same amount of time needed to help launch SLS – and at power levels ranging between 80% to 113%. New RS-25 engines will power up to the 111% level to provide additional thrust for launch of SLS. Testing up to the 113% power level provides a margin of operational safety.

Now at the halfway point in the series, teams will install a new certification nozzle on the engine. Installation of the new nozzle will allow engineers to gather additional performance data from a second production unit. Following installation next month, testing will resume at Stennis with six additional hot fires scheduled through March.

RS-25 engine with second production nozzle installed
Having reached the halfway point in a 12-test RS-25 certification series, teams at NASA’s Stennis Space Center will install a second production nozzle on the engine to gather additional performance data during the remaining scheduled hot fires.
Aerojet Rocketdyne

For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS to produce more than 8.8 million pounds of thrust at liftoff. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.

NASA’s Marshall Space Flight Center manages the SLS Program.

› Back to Top

Cygnus Lifts Off Atop SpaceX Rocket to Deliver Station Cargo

A fresh supply of more than 8,200 pounds of scientific investigations and cargo is on its way to the International Space Station on a Northrop Grumman Cygnus resupply spacecraft after launching on a SpaceX Falcon 9 rocket at 11:07 a.m. CST Jan. 30 from Space Launch Complex 40 at Cape Canaveral Space Force Station.

The Cygnus cargo craft from Northrop Grumman launches atop the SpaceX Falcon 9 rocket at Space Launch Complex 40 at Cape Canaveral Space Force Station on Jan. 30.
The Cygnus cargo craft from Northrop Grumman launches atop the SpaceX Falcon 9 rocket at Space Launch Complex 40 at Cape Canaveral Space Force Station on Jan. 30.
NASA TV

Cygnus has successfully deployed its two solar arrays and is scheduled to arrive at the space station around 3:15 a.m. Feb. 1. NASA+, NASA Television, the NASA app, and agency’s website will provide live coverage of the spacecraft’s approach and arrival beginning at 1:45 a.m.

NASA astronaut Jasmin Moghbeli will capture Cygnus using the station’s Canadarm2 robotic arm, and NASA astronaut Loral O’Hara will be acting as a backup. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port.

This is Northrop Grumman’s 20th contracted resupply mission for NASA.

The Payload Operations Integration Center at NASA’s Marshall Space Flight Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

Learn more about station activities by following the space station blog.

› Back to Top

NASA Space Tech Spinoffs Benefit Earth Medicine, Moon to Mars Tools

As NASA innovates for the benefit of all, what the agency develops for exploration has the potential to evolve into other technologies with broader use here on Earth. Many of those examples are highlighted in NASA’s annual Spinoff book including dozens of NASA-enabled medical innovations, as well other advancements.

Inside of an underground subway station, two firefighters carry a robot mounted inside of a trapezoid-shaped wireframe toward a blazing fire. There is a subway car to the firefighters’ right, highlighted by the red, yellow, and orange hue of a fire in the background. The robot helps firefighters and other first responders protect their lives and the lives of others by investigating hazardous situations.
Squishy Robotics’ Tensegrity Sensor Robots help first responders determine their approach to a disaster scene. Firefighters used the robots during a subway attack exercise at the 2021 Unmanned Tactical Application Conference to detect gas leaks and other hazards.
Credits: FLYMOTION LLC.

This year’s publication, NASA’s 2024 Spinoff, features several commercialized technologies using the agency’s research and development expertise to impact everyday lives, including:

“As we continue to push new frontiers and do the unimaginable, NASA’s scientists and engineers are constantly innovating and advancing technologies,” said NASA Administrator Bill Nelson. “A critical part of our mission is to quickly get those advances into the hands of companies and entrepreneurs who can use them to grow their businesses, open new markets, boost the economy, and raise the quality of life for everyone.”

The medical innovations include the first wireless arthroscope – a small tube carrying a camera inserted into the body during surgery – to receive clearance from the U.S. Food and Drug Administration, which benefited from NASA’s experience with spacesuits and satellite batteries. Technologies for diagnosing illnesses like the coronavirus, hepatitis, and cancer have also stemmed from NASA’s space exploration and science endeavors. Even certain types of toothpaste originated from the agency’s efforts to grow crystals for electronics.

Additional 2024 Spinoff highlights include developments under  NASA’s Artemis campaign, like a small, rugged video camera used to improve aircraft safety and a new method for detecting defects or damage in composite materials. Meanwhile, another Spinoff story details the latest benefits of fuel cell technology created more than 50 years ago for Apollo, which is now poised to support terrestrial power grids based on renewable energy.

The book also features several technologies NASA has identified as promising future spinoffs and information on how to license agency tech. Since the 1970s, thousands of NASA technologies have found their way into many scientific and technical disciplines, impacting nearly every American industry.

“As NASA’s longest continuously running program, we continue to increase the number of technologies we license year-over-year while streamlining the development path from the government to the commercial sector,” said Daniel Lockney, Technology Transfer program executive at NASA Headquarters. “These commercialization success stories continually prove the benefits of transitioning agency technologies into private hands, where the real impacts are made.”

Spinoffs are part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. Tech Transfer is charged with finding broad, innovative applications for NASA-developed technology through partnerships and licensing agreements, ensuring agency investments benefit the nation and the world.

Read the latest issue of Spinoff.

› Back to Top

Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies

It’s oh-so-easy to be absolutely mesmerized by these spiral galaxies. Follow their clearly defined arms, which are brimming with stars, to their centers, where there may be old star clusters and – sometimes – active supermassive black holes. Only NASA’s James Webb Space Telescope can deliver highly detailed scenes of nearby galaxies in a combination of near- and mid-infrared light – and a set of these images was publicly released Jan. 29.

These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS, or PHANGS, program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array. These included observations in ultraviolet, visible, and radio light. Webb’s near- and mid-infrared contributions have provided several new puzzle pieces.

The James Webb Space Telescope observed 19 nearby face-on spiral galaxies in near- and mid-infrared light as part of its contributions to the Physics at High Angular resolution in Nearby GalaxieS, or PHANGS, program. PHANGS also includes images and data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, which included observations taken in ultraviolet, visible, and radio light.
The James Webb Space Telescope observed 19 nearby face-on spiral galaxies in near- and mid-infrared light as part of its contributions to the Physics at High Angular resolution in Nearby GalaxieS, or PHANGS, program. PHANGS also includes images and data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, which included observations taken in ultraviolet, visible, and radio light.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team, Elizabeth Wheatley (STScI))

“Webb’s new images are extraordinary,” said Janice Lee, a project scientist for strategic initiatives at the Space Telescope Science Institute in Baltimore. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Excitement rapidly spread throughout the team as the Webb images flooded in. “I feel like our team lives in a constant state of being overwhelmed – in a positive way – by the amount of detail in these images,” added Thomas Williams, a postdoctoral researcher at the University of Oxford in the United Kingdom.

Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images, which sparkle in blue tones. Some stars are spread throughout the spiral arms, but others are clumped tightly together in star clusters.

Face-on spiral galaxy, NGC 628, is split diagonally in this image: The James Webb Space Telescope’s observations appear at top left, and the Hubble Space Telescope’s on bottom right. Webb and Hubble’s images show a striking contrast, an inverse of darkness and light. Why? Webb’s observations combine near- and mid-infrared light and Hubble’s showcase visible light. Dust absorbs ultraviolet and visible light, and then re-emits it in the infrared. In Webb's images, we see dust glowing in infrared light. In Hubble’s images, dark regions are where starlight is absorbed by dust.
Face-on spiral galaxy, NGC 628, is split diagonally in this image: The James Webb Space Telescope’s observations appear at top left, and the Hubble Space Telescope’s on bottom right. Webb and Hubble’s images show a striking contrast, an inverse of darkness and light. Why? Webb’s observations combine near- and mid-infrared light and Hubble’s showcase visible light. Dust absorbs ultraviolet and visible light, and then re-emits it in the infrared. In Webb’s images, we see dust glowing in infrared light. In Hubble’s images, dark regions are where starlight is absorbed by dust.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

The telescope’s MIRI (Mid-Infrared Instrument) data highlights glowing dust, showing us where it exists around and between stars. It also spotlights stars that haven’t yet fully formed – they are still encased in the gas and dust that feed their growth, like bright red seeds at the tips of dusty peaks. “These are where we can find the newest, most massive stars in the galaxies,” said Erik Rosolowsky, a professor of physics at the University of Alberta in Edmonton, Canada.

Something else that amazed astronomers? Webb’s images show large, spherical shells in the gas and dust. “These holes may have been created by one or more stars that exploded, carving out giant holes in the interstellar material,” explained Adam Leroy, a professor of astronomy at the Ohio State University in Columbus.

Now, trace the spiral arms to find extended regions of gas that appear red and orange. “These structures tend to follow the same pattern in certain parts of the galaxies,” Rosolowsky added. “We think of these like waves, and their spacing tells us a lot about how a galaxy distributes its gas and dust.” Study of these structures will provide key insights about how galaxies build, maintain, and shut off star formation.

Webb Telescope’s view face-on of spiral galaxy NGC 4254.
Webb Telescope’s view face-on of spiral galaxy NGC 4254.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Evidence shows that galaxies grow from inside out – star formation begins at galaxies’ cores and spreads along their arms, spiraling away from the center. The farther a star is from the galaxy’s core, the more likely it is to be younger. In contrast, the areas near the cores that look lit by a blue spotlight are populations of older stars.

What about galaxy cores that are awash in pink-and-red diffraction spikes? “That’s a clear sign that there may be an active supermassive black hole,” said Eva Schinnerer, a staff scientist at the Max Planck Institute for Astronomy in Heidelberg, Germany. “Or, the star clusters toward the center are so bright that they have saturated that area of the image.”

There are many avenues of research that scientists can begin to pursue with the combined PHANGS data, but the unprecedented number of stars Webb resolved are a great place to begin. “Stars can live for billions or trillions of years,” Leroy said. “By precisely cataloging all types of stars, we can build a more reliable, holistic view of their life cycles.”

In addition to immediately releasing these images, the PHANGS team has also released the largest catalog to date of roughly 100,000 star clusters. “The amount of analysis that can be done with these images is vastly larger than anything our team could possibly handle,” Rosolowsky emphasized. “We’re excited to support the community so all researchers can contribute.”

See the full set of 19 images from both Webb and Hubble.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.

› Back to Top

Poised for Science: NASA’s Europa Clipper Instruments are All Aboard

With less than nine months remaining in the countdown to launch, NASA’s Europa Clipper mission has passed a major milestone: Its science instruments have been added to the massive spacecraft, which is being assembled at the agency’s JPL (Jet Propulsion Laboratory).

Set to launch from NASA’s Kennedy Space Center in October, the spacecraft will head to Jupiter’s ice-encased moon Europa, where a salty ocean beneath the frozen surface may hold conditions suitable for life. Europa Clipper won’t be landing; rather, after arriving at the Jupiter system in 2030, the spacecraft will orbit Jupiter for four years, performing 49 flybys of Europa and using its powerful suite of nine science instruments to investigate the moon’s potential as a habitable environment.

NASA’s Europa Clipper, with all of its instruments installed, is visible in the clean room of High Bay 1 at the agency’s Jet Propulsion Laboratory on Jan. 19. The tent around the spacecraft was erected to support electromagnetic testing.
NASA’s Europa Clipper, with all of its instruments installed, is visible Jan. 19 in the clean room of High Bay 1 at the agency’s Jet Propulsion Laboratory. The tent around the spacecraft was erected to support electromagnetic testing.
NASA/JPL-Caltech

“The instruments work together hand in hand to answer our most pressing questions about Europa,” said JPL’s Robert Pappalardo, the mission’s project scientist. “We will learn what makes Europa tick, from its core and rocky interior to its ocean and ice shell to its very thin atmosphere and the surrounding space environment.”

The hallmark of Europa Clipper’s science investigation is how all of the instruments will work in sync while collecting data to accomplish the mission’s science objectives. During each flyby, the fully array of instruments will gather measurements and images that will be layered together to paint the full picture of Europa.

“The science is better if we obtain the observations at the same time,” Pappalardo said. “What we’re striving for is integration, so that at any point we are using all the instruments to study Europa at once and there is no need to have to trade off among them.”

By studying the environment around Europa, scientists will learn more about the moon’s interior. The spacecraft carries a magnetometer to measure the magnetic field around the moon. That data will be key to understanding the ocean, because the field is created, or induced, by the electrical conductivity of the ocean’s saltwater as Europa moves through Jupiter’s strong magnetic field. Working in tandem with the magnetometer is an instrument that will analyze the plasma (charged particles) around Europa, which can distort magnetic fields. Together, they’ll ensure the most accurate measurements possible.

What the mission discovers about Europa’s atmosphere will also lend insights into the moon’s surface and interior. While the atmosphere is faint, with only 100 billionth the pressure of Earth’s atmosphere, scientists expect that it holds a trove of clues about the moon. They have evidence from space- and ground-based telescopes that there may be plumes of water vapor venting from beneath the moon’s surface, and observations from past missions suggest that ice and dust particles are being ejected into space by micrometeorite impacts.

Three instruments will help investigate the atmosphere and its associated particles: A mass spectrometer will analyze gases, a surface dust analyzer will examine dust, and a spectrograph will collect ultraviolet light to search for plumes and identify how the properties of the dynamic atmosphere change over time.

Jupiter’s icy moon Europa holds a vast internal ocean that could have conditions suitable for life. NASA’s Europa Clipper mission will help scientists better understand the potential for habitable worlds beyond our planet. (NASA/JPL-Caltech)

All the while, Europa Clipper’s cameras will be taking wide- and narrow-angle pictures of the surface, providing the first high-resolution global map of Europa. Stereoscopic, color images will reveal any changes in the surface from geologic activity. A separate imager that measures temperatures will help scientists identify warmer regions where water or recent ice deposits may be near the surface.

An imaging spectrometer will map the ices, salts, and organic molecules on the moon’s surface. The sophisticated set of imagers will also support the full instrument suite by collecting visuals that will provide context for the set of data collected.

Of course, scientists also need a better understanding of the ice shell itself. Estimated to be about 10 to 15 miles thick, this outer casing may be geologically active, which could result in the fracture patterns that are visible at the surface. Using the radar instrument, the mission will study the ice shell, including searching for water within and beneath it. (The instrument’s electronics are now aboard the spacecraft, while its antennas will be mounted to the spacecraft’s solar arrays at Kennedy later this year.)

Finally, there’s Europa’s interior structure. To learn more about it, scientists will measure the moon’s gravitational field at various points in its orbit around Jupiter. Observing how signals transmitted from the spacecraft are tugged on by Europa’s gravity can tell the team more about the moon’s interior. Scientists will use the spacecraft’s telecommunications equipment for this science investigation.

With all nine instruments and the telecommunications system aboard the spacecraft, the mission team has begun testing the complete spacecraft for the first time. Once Europa Clipper is fully tested, the team will ship the craft to Kennedy in preparation for launch on a SpaceX Falcon Heavy rocket.

Europa Clipper’s main science goal is to determine whether there are places below Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Managed by Caltech in Pasadena, California, NASA’s JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.

› Back to Top

Hubble Observes a Galactic Distortion

The galaxy NGC 5427 shines in a new NASA Hubble Space Telescope image. It’s part of the galaxy pair Arp 271, and its companion NGC 5426 is located below this galaxy and outside of this image’s frame. However, the effects of the pair’s gravitational attraction is visible in the galactic distortion and cosmic bridge of stars seen in the lower-right region of the image.

Hubble Observes a Galactic Distortion
The galaxy NGC 5427 shines in this new NASA Hubble Space Telescope image.
NASA, ESA, and R. Foley (University of California – Santa Cruz); Processing: Gladys Kober (NASA/Catholic University of America

In 1785, British astronomer William Herschel discovered the pair, which is locked in an interaction that will last for tens of millions of years. Whether they will ultimately collide and merge is still uncertain, but their mutual gravitational attraction has already birthed many new stars. These young stars are visible in the faint bridge connecting the two galaxies, located at the bottom of the image. Such a bridge provides an avenue for the two galaxies to continue sharing the gas and dust that becomes new stars.

Hubble Observes a Galactic Distortion
The galaxy NGC 5427 shines in the large image from Hubble, with ground-based observations showing its companion galaxy NGC 5426. Together, this pair is known as Arp 271.
NASA, ESA, and R. Foley (University of California – Santa Cruz); Processing: Gladys Kober (NASA/Catholic University of America

Scientists believe Arp 271 can serve as a blueprint for future interactions between our Milky Way Galaxy and our neighbor the Andromeda Galaxy, expected to happen in about 4 billion years.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Researchers demonstrated the feasibility of 3D bioprinting a meniscus or knee cartilage tissue in microgravity. This successful result advances technology for bioprinting tissue to treat musculoskeletal injuries on long-term spaceflight or in extraterrestrial settings where resources and supply capacities are limited.

      BFF Meniscus-2 evaluated using the BioFabrication Facility to 3D print knee cartilage tissue using bioinks and cells. The meniscus is the first engineered tissue of an anatomically relevant shape printed on the station. Manufactured human tissues have potential as alternatives to donor organs, which are in short supply. Bioprinting in microgravity overcomes some of the challenges present in Earth’s gravity, such as deformation or collapse of tissue structures.
      A human knee meniscus 3D bioprinted in space using the International Space Station’s BioFabrication Facility.Redwire Complex cultures of central nervous system cells known as brain organoids can be maintained in microgravity for long periods of time and show faster development of neurons than cultures on Earth. These findings could help researchers develop treatments for neurodegenerative diseases on Earth and address potential adverse neurological effects of spaceflight.

      Cosmic Brain Organoids examined growth and gene expression in 3D organoids created with neural stem cells from individuals with primary progressive multiple sclerosis and Parkinson’s disease. Results could improve understanding of these neurological diseases and support development of new treatments. Researchers plan additional studies on the underlying causes of the accelerated neuron maturation.
      Neural growth in brain organoids that spent more than a month in space. Jeanne Frances Loring, National Stem Cell Foundation Researchers demonstrated that induced pluripotent stem cells (iPSCs) can be processed in microgravity using off the-shelf cell culture materials. Using standard laboratory equipment and protocols could reduce costs and make space-based biomedical research accessible to a broader range of scientists and institutions.

      Stellar Stem Cells Ax-2 evaluated how microgravity affects methods used to generate and grow stem cells into a variety of tissue types on the ground. iPSCs can give rise to any type of cell or tissue in the human body, and insight into processing in space could support their use in regenerative medicine and future large-scale biomanufacturing of cellular therapeutics in space.
      NASA astronaut Peggy Whitson, an Axiom Mission 2 crew member, works on stem cell research on a previous mission. NASA/Shane KimbroughView the full article
    • By NASA
      Astrogram banner TIME Recognizes the Advanced Composite Solar Sail System
      In October, the Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024”! TIME Magazine also recognized two other NASA missions this year: Europa Clipper, and the Deep Space Optical Communications experiment.   
      The Advanced Composite Solar Sail System is a demonstration of technologies that enable spacecraft to “sail on sunlight,” using solar radiation for propulsion. Results from this mission could provide an alternative to chemical and electric propulsion systems and guide the design of future larger-scale spacecraft for space weather early warning satellites, near-Earth asteroid reconnaissance missions, or communications relays for crewed exploration missions at the Moon and Mars.  
      The Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024.”NASA This twelve-unit (12U) CubeSat features a reflective sail held taut by composite booms made from flexible polymer and carbon fiber materials that are stiffer and lighter than previous designs. The square-shaped solar sail measures approximately 80 square meters, but the new boom technology could support future missions for solar sails up to 500 square meters.   
      The mission launched on April 23 via a Rocket Lab Electron rocket and met its primary objective in August by deploying the boom and sail system in space. Next, the team will attempt to demonstrate maneuverability in orbit using the sail.   
      Congratulations to the Advanced Composite Solar Sail System team and the Small Spacecraft Technology program office, based at Ames, for this well-earned recognition. Their contributions continue to push the boundaries of what we can achieve at NASA, and this acknowledgment highlights the capabilities and vision of our center.   

      Representative Anna Eshoo Recognized for 32 Years of Distinguished Public Service
      On Oct. 29, Ames hosted a recognition event for Representative Anna Eshoo to honor her 32 years of public service and to thank her for her enduring support for NASA and our center. Representative Eshoo announced her retirement from Congress in 2023.
      On Oct. 29, Ames Center Director Dr. Eugene Tu presented the Pioneer Plaque to Congresswoman Anna Eshoo in the ballroom of Building 3 at NASA Research Park.NASA photo by Brandon Torres Representative Zoe Lofgren, public officials from across the Bay Area, and colleagues from around the center were in attendance to celebrate Representative Eshoo’s decades of tireless support. During the formal program, Ames Center Director Dr. Eugene Tu presented her with a replica of a Pioneer Plaque (photo above) as a token of appreciation for her many years as a champion for NASA Ames – from Hangar One, to the USGS Building, and the Moffett Field Museum.
      Congresswoman Anna Eshoo gives remarks to the audience during the unveiling of her commemorative plaque at the Moffett Field Museum, in NASA Research Park, on Oct. 29.NASA photo by Brandon Torres Safety Day Organizational Silence Town Hall Held

      On Oct. 1, a Safety Day Organizational Silence Town Hall was held that focused on employee feedback and insights from prior Safety Culture, Federal Employee Viewpoint, and DEIA Organizational Climate surveys.
      Fostering a psychologically safe culture of open communication at NASA and Ames is imperative for the safety of our team and for the collective success of our missions. This is a topic of particular interest and concern to Ames center leadership. 
      Acting Director of the NASA Safety Center Bob Conway speaks during the Oct. 1 Safety Day Organization Silence Town Hall.NASA photo by Don RIchey Acting Director of the NASA Safety Center, Bob Conway, presented in person at Ames to conduct the hybrid town hall event in the N201 auditorium on Organizational Silence. In addition to valuable insights and tactics, there was the opportunity for employees to ask questions via a Conference I/O channel and in person during the event. 
      Following the main presentation, Associate Center Director Amir Deylami, at the podium, leads a question-and-answer session with the town hall audience and online attendees of the Safety Day: Organizational Silence town hall, with (seated left to right) Acting Director of the NASA Safety Center Bob Conway, Deputy Center Director David Korsmeyer, Director of Safety and Mission Assurance Directorate Drew Demo, and Director of Center Operations Directorate Aga Goodsell.NASA photo by Don RIchey Deputy Administrator Pam Melroy Visits Ames, Attends Roundtable Discussions

      NASA Deputy Administrator Pam Melroy speaks with NASA 2040 participants in the lobby of N232, during her visit to Ames on Sept. 16.NASA photo by Brandon Torres On Sept. 16, Ames welcomed NASA Deputy Administrator Pam Melroy to the center. Having toured the facilities at Ames on past visits, Melroy visited the center to engage in several roundtable discussions with employees focused on procurement, NASA 2040, and leadership. She also greeted a delegation from the American Chamber of Commerce in Australia, with Australia being among the original eight international partners to sign on to the Artemis Accords in 2020. Across all of her conversations, Melroy voiced her appreciation for the Ames workforce for their steadfast dedication. She also consistently expressed her admiration for the diverse array of foundational work being done at Ames to advance NASA’s mission. 

      President of Latvia, Edgars Rinkēvičs Visits Ames
      The President of Latvia Edgars Rinkēvičs visited Ames on Sept. 18 to learn about our aeronautics research and some of the center’s technical capabilities. Accompanied by a delegation of Latvian business representatives, the president visited the Airspace Operations Lab and FutureFlight Central.  
      President of Latvia Edgars Rinkēvičs, right, chats with Ames Center Director Dr. Eugene Tu, second from right, while in FutureFlight Central.NASA photo by Brandon Torres During the visit, he was briefed on the center’s air traffic management simulation capabilities aimed at solving the challenges – present and emerging – of the nation’s air traffic management system. Center experts discussed innovative work in airspace management, including commercial and public safety drone operations that extend from local incidents to large-scale disaster response. Through these international visits, we are showcasing NASA to the world.  

      Discussions, Lightning Pitches Presented at Ames’ Aeronautics Innovation Forum
      The 2024 Aeronautics Innovation Forum was held Sept. 17 – 19, supporting aeronautics research and innovation. A panel discussion, “Aeronautics & Space Economy” was held the first day with Dr. Parimal Kopardekar, Director of the NASA Aeronautics Research Institute (NARI) acting as the moderator. Panelists were Dr. Alex MacDonald, Chief Economist, NASA; Peter Shannon, Radius Capital, AAM Investor; Julia Black, Director of Range Operations, Stoke Space; and Dr. Yewon Kim, Professor, Stanford Graduate School of Business. Facility tours were also given during the forum. Lightning pitches were presented, along with an All Hands meeting, an aeronautics taco fiesta picnic and games at the Ames Park, and an ice cream social and Aeronautics Innovation Center (AIC) discussion.
      Director of NASA’s Aeronautics Research Institute (NARI) Parimal Kopardekar (PK) moderates a panel session “Aeronautics & Space Economy” during the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Nelson Iwai gives attendees of the 2024 Ames Aeronautics INNOVATION Forum a tour of the Aerospace Cognitive Engineering Lab Rapid Automation Test Environment (ACEL-RATE) in N262.NASA photo by Don Richey Don Durston gives his lightening pitch on day three of the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Following the 2024 Ames Aeronautics Innovation Forum, attendees met in Mega-Bytes for an ice cream social and to discuss the Aeronautics Innovation Center.NASA photo by Don Richey
      NASA and Partners Scaling to New Heights in Air Traffic Management
      by Hillary Smith
      NASA, in partnership with AeroVironment and Aerostar, recently demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes.
      This work seeks to open the door for increased internet coverage, improved disaster response, expanded scientific missions, and even supersonic flight. The concept is referred to as an Upper-Class E traffic management, or ETM.  There is currently no traffic management system or set of regulations in place for aircraft operating 60,000 feet and above. There hasn’t been a need for a robust traffic management system in this airspace until recently. That’s because commercial aircraft couldn’t function at such high altitudes due to engine constraints.  
      NASA and partners from Aerostar and AeroVironment discuss a simulation of a high-altitude air traffic management system in the Airspace Operations Lab at NASA Ames.NASA photo by Don Richey However, recent advancements in aircraft design, power, and propulsion systems are making it possible for high- altitude, long-endurance vehicles — such as balloons, airships, and solar aircraft — to coast miles above our heads, providing radio relay for disaster response, collecting atmospheric data, and more.  
      But before these aircraft can regularly take to the skies, operators must find a way to manage their operations without overburdening air traffic infrastructure and personnel.  
      “We are working to safely expand high-altitude missions far beyond what is currently possible,” said Kenneth Freeman, a subproject manager for this effort at NASA’s Ames Research Center in California’s Silicon Valley. “With routine, remotely piloted high-altitude operations, we have the opportunity to improve our understanding of the planet through more detailed tracking of climate change, provide internet coverage in underserved areas, advance supersonic flight research, and more.” 
      Current high-altitude traffic management is processed manually and on a case-by-case basis. Operators must contact air traffic control to gain access to a portion of the Class E airspace. During these operations, no other aircraft can enter this high-altitude airspace. This method will not accommodate the growing demand for high-altitude missions, according to NASA researchers.  
      To address this challenge, NASA and its partners have developed an ETM traffic management system that allows aircraft to autonomously share location and flight plans, enabling aircraft to stay safely separated. 
      During the recent traffic management simulation in the Airspace Operations Laboratory at Ames, data from multiple air vehicles was displayed across dozens of traffic control monitors and shared with partner computers off site.
      This included aircraft location, health, flight plans and more. Researchers studied interactions between a slow fixed-wing vehicle from AeroVironment and a high-altitude balloon from Aerostar operating at stratospheric heights.
      Each aircraft, connected to the ETM traffic management system for high altitude, shared location and flight plans with surrounding aircraft.  
      This digital information sharing allowed Aerostar and AeroVironment high-altitude vehicle operators to coordinate and deconflict with each other in the same simulated airspace, without having to gain approval from air traffic control.
      Because of this, aircraft operators were able to achieve their objectives, including wireless communication relay. 
      This simulation represents the first time a traffic management system was able to safely manage a diverse set of high-altitude aircraft operations in the same simulated airspace.
      Next, NASA researchers will work with partners to further validate this system through a variety of real flight tests with high-altitude aircraft in a shared airspace.   
      The Upper-Class E traffic management concept was developed in coordination with the Federal Aviation Administration and high-altitude platform industry partners, under NASA’s National Airspace System Exploratory Concepts and Technologies subproject led out of Ames.  

      Starship Super Heavy Breezes Through Wind Tunnel Testing at NASA Ames
      by Lee Mohon
      NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA Ames. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA Ames’ transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the Starship HLS, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

      2024 NASA SmallSat In-Person LEARN Forum Held

      Audience members participate in a discussion during the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum held Sept. 24 in the ballroom of Building 3 at NASA Research Park.NASA NASA Conjunction Assessment Program Officer Lauri Newman speaks at the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum in the ballroom of Building 3 at NASA Research Park.NASA Attendees of the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum read about other projects during the poster session in the ballroom of Building 3 at NASA Research Park.NASA NASA Astronauts, Leadership Visit Children’s Hospital, Cancer Moonshot Event
      NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4.
      Roundtable discussions centered conversation around the five hazards of human spaceflight: space radiation, isolation and confinement, distance from Earth, gravity, and closed or hostile environments. Many of these hazards have direct correlations to a cancer patient’s lived experience, like the isolation of a hospital room and long-term effects of radiation.
      NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research efforts.NASA photo by Brandon Torres During the visit with patients at the UCSF Benioff Children’s Hospital San Francisco, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space.
      Patients also received a video message from NASA astronauts Suni Williams and Butch Wilmore from the International Space Station, and met with the Director of NASA’s Johnson Space Center in Houston Vanessa Wyche, Ames Center Director Dr. Eugene Tu, and other agency leaders.
      Leadership from NASA and the University of California, San Francisco gathered for an informal luncheon before a collaborative roundtable discussion of research opportunities. From left to right, Alan Ashworth, president of the UCSF Helen Diller Family Comprehensive Cancer Center, Dr. Eugene Tu, director NASA Ames, Dr. David Korsmeyer, deputy director NASA Ames, Sam Hawgood, chancellor of UCSF, and Vanessa Wyche, director NASA’s Johnson Space Center in Houston.NASA photo by Brandon Torres By connecting the dots between human space research and cancer research, NASA and the University of California hope to open doors to innovative new research opportunities. NASA is working with researchers, institutions, and agencies across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative.
      Learn more about the Cancer Moonshot at: https://www.whitehouse.gov/cancermoonshot

      NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
      by Gianine Figliozzi
      NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown below is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. 
      Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
      A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.  
      “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said Dr. John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
      The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to  increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
      The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. NASA’s Marshall Space Flight Center in Huntsville, Alabama designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center in California’s Silicon Valley and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.

      2024 Silver Snoopy Awards Presented by Astronaut Nicole Mann
      On Oct. 24, Astronaut Nicole Mann presented the Silver Snoopy Awards in the Syvertson Auditorium at the center. The Silver Snoopy best symbolizes the intent and spirit of Space Flight Awareness.  An astronaut always presents the Silver Snoopy because it is the astronauts’ own award for outstanding performance, contributing to flight safety and mission success.  Fewer than one percent of the aerospace program workforce receive it annually, making it a special honor to receive this award.
      Silver Snoopy Award recipient Tomomi Oishi (holding award) and Astronaut Nicole Mann with colleagues in the Syvertson Auditorium during the award ceremony on Oct. 24.NASA photo by Brandon Torres Silver Snoopy Award presented to Ali Guarneros Luna, center, by Center Director Dr. Eugene Tu, left, and Astronaut Nicole Mann in the Syvertson Auditorium on Oct. 24.NASA photo by Brandon Torres Jordan Kam Receives a Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award
      by Maria C. Lopez
      Jordan Kam, a rising star at NASA Ames and a dedicated member of the Ames Hispanic Advisory Committee for Employees (HACE), recently received the prestigious Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award at the SHPE 50th National Convention held in Anaheim, California.
      Left to right, at the SHPE 50th National Convention award ceremony: Oscar Dubón, professor of Materials Science & Engineering (MSE) and associate dean of Students in the College of Engineering at UC Berkeley; Jordan Kam, recipient of the SHPE Undergraduate Research Competition Award; and Marvin Lopez, director of Student Programs, College of Engineering at UC Berkeley. Currently pursuing an engineering degree at UC Berkeley, Jordan also is interning at NASA Ames through the Volunteer Internship Program, supporting the Intelligent Systems Division. Jordan’s award-winning research, entitled “Development of The Wireless Prototype ‘STAMPS’ for Data Acquisition, Analysis, and Visualization,” focuses on the System for Telemetry Amalgamation of Multimodal Prognostics. This innovative project plays a crucial role in diagnostics and prognostics for the Earth Independent Operations (EIO) Domain, which is essential for NASA’s Mars Campaign efforts.
      The SHPE National Convention is the largest annual gathering of Hispanic STEM students and professionals, with more than 20,000 members dedicated to promoting Hispanic leadership in STEM fields. Jordan’s achievement is not only a testament to hard work and dedication but also an inspiration to all of us.

      Celebrating Hispanic Heritage Month: Ignacio Lopez-Francos Featured in Newsweek En Español
      by Maria C. Lopez
      In honor of Hispanic Heritage Month, Newsweek En Español has released a special October/November edition that highlights Hispanics around the globe who are making significant contributions to the field of artificial intelligence. NASA Ames’ very own Ignacio Lopez-Francos has been featured in this prestigious publication!
      Ignacio Lopez-Francos, a principal research engineer with the Intelligent Systems Division at NASA Ames has been featured in this Newsweek En Español. Ignacio is a principal research engineer with the Intelligent Systems Division at NASA Ames, working through the KBR Wyle Services, LLC contract. Ignacio’s groundbreaking research focuses on applied AI for robot autonomy, encompassing core areas such as vision-based navigation, 3D scene reconstruction, geospatial mapping, edge computing, and foundation models. In addition to Ignacio’s impressive technical work, Ignacio is an active member of the Ames Hispanic Advisory Committee for Employees (HACE), further demonstrating his commitment to community and representation.
      Congratulations, Ignacio! Your pioneering efforts in AI are not only advancing technology but also making a global impact. It is inspiring to see you representing the NASA workforce and serving as a role model for future generations. We celebrate your passion and dedication!

      Congratulations to Major Crystal A. Armendariz on her Promotion to Army Major!
      by Maria C. Lopez
      On Sept. 16, the Ames Veterans Committee (AVC) proudly celebrated the promotion of Crystal A. Armendariz to the rank of United States Army Major during a ceremony at NASA Ames. This momentous occasion was organized by AVC and the Asian American Pacific Islander Advisory Group (AAPIAG), bringing together colleagues and friends to honor Major Armendariz’s exceptional service and dedication.
      Major Crystal Armendariz 397th Engineer Battalion Executive Officer (center) wears her new Major rank, standing alongside her daughter Maya Karp and guest David Chavez during the September 16 ceremony. Major Armendariz is a distinguished military graduate of California State University-Sacramento, where she earned a degree in Health Science with a focus on Community Health Education, as well as her commission in the United States Army. After completing the Army Military Intelligence Basic Officer Leader Course, she began her career with the 25th Combat Aviation Brigade at Wheeler Army Airfield in Hawaii, quickly deploying to Afghanistan as the Brigade Assistant Intelligence Officer in support of Operation Enduring Freedom. Her career has since seen her take on key leadership roles, including Battalion Intelligence Officer in Charge and Company Executive Officer, where she demonstrated remarkable skill and commitment to her missions.
      Following her completion of the Army Military Intelligence Captain’s Career Course, Major Armendariz served at Fort Carson, Colorado, and took part in Operation Atlantic Resolve in Germany. Her leadership extended to managing complex security programs and providing critical intelligence support in joint operational environments. In 2021, she served as the Battalion Security Officer for the 25th Infantry Division at Schofield Barracks, ensuring safety compliance and advising command on security matters across multiple operational theaters.
      In 2023, Major Armendariz transitioned to the 397th Reserve Engineer Battalion in Marina, California, as the Battalion S2. Shortly thereafter, she was selected as the Battalion Executive Officer and promoted to Major, overseeing staff operations and ensuring effective communication and planning. Her impressive accolades include the Knowlton Award, Joint Service Commendation Medal, and several other commendations that highlight her unwavering commitment to excellence in military service. Congratulations Major Crystal Armendariz on a well-deserved promotion and remarkable achievements!

      Faces of NASA – Ames’ Dr. Donald Mendoza, Chief Engineer
      “From my earliest childhood, flight had always captivated me. I lived out in the boonies and the farmlands, so I didn’t have neighbors to go and play with. If I wasn’t working, I was left to my own devices, and often, I would just be captivated by the wildlife and in particular, the birds of prey that I would see.
      Dr. Donald Menodoza, Chief Engineer, NASA Engineering and Safety Center at Ames.NASA photo by Dominic Hart “To me, they represented a freedom of some kind or another. These birds and the view they have — they can take in so much. So, from that point on, I knew I wanted to be involved in flight and aviation.
      “I [enjoyed] all things flight, all things spaceflight. I couldn’t get enough of it. I became an avid reader, whereas before, I wasn’t much of a reader. I couldn’t get enough material to read about my heroes from flight and space. They became my role models and the path that they took involved, at some point or another, a pretty rigorous education and dedication to doing well academically, physically, or athletically. So, I threw myself into that entire sort of mindset.
      “When I was working for the Air Force, I was able to fly and work on aircraft that I would dream about, looking at in the magazines Aviation Week and Space Technology. Here they are, right in front of me.
      “… So, my career has been as close as possible to that of a flight test engineer. And then, right on the heels of being captivated by atmospheric flight, working in human spaceflight has put me over the Moon.”
      —Dr. Donald Mendoza, Chief Engineer, NASA Engineering & Safety Center, NASA’s Ames Research Center
      Check out some of our other Faces of NASA.

      Cybersecurity Specialist Jonathan Kaldani Inspires Students at CSU East Bay
      On Oct. 29, Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team within the Cybersecurity and Privacy Division (CSPD) at NASA Ames, spoke to students in Professor Ahmed Banafa’s Computer Network class at CSU East Bay in Hayward, California.
      Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team at NASA Ames, giving his “Fly Me to the Moon” presentation to a Computer Network class at CSU East Bay in Hayward, California. The insightful session, “Fly Me to the Moon” delved into NASA’s mission and it’s future, and cybersecurity. It provided students with valuable career insights, including information about jobs and internships at NASA. The engagement was exceptional with students actively participating, and showcasing a high level of interest through numerous questions that extended beyond the scheduled class time.
      For all NASA Ames employees, if you are interested in sharing the NASA mission with others in your community, you are encouraged to take time to participate in NASA Engages speaking events!

      We Are All Made of Cells: Space and the Immune System
      by Rachel Hoover
      Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms. 
      But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
      Bone cells NASA/Eduardo Almeida and Cassie Juran “Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
      O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
      “The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
      jA preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation.
      Image credit: courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
      “It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
      During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
      “I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
      When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity. 
      O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.

      Wildly Popular 21st Annual Chili Cook-Off and Car Show Held
      The Ames Exchange sponsored its 21st annual Chili Cook-Off on Oct. 30 behind Building 3. The theme for this year’s event was “Halloween Night,” which led to some really creative costumes. Attendees, both from Ames and the NASA Research Park, sampled chili and voted on their favorites. See below for photos of some of the spooky entries. A car and motorcycle show was also held in conjunction with the chili cook-off.
      The 21st Annual Chili Cook-off held Oct. 30 with Hanger One in the background.NASA photos by Don Richey The NASA Ames Fire Department won the Judge’s Choice award for best chili. The classic car collection at the recent Chili Cook-off. One of the collector’s cars at the Chili Cook-off. Classic bike collection at the Chili Cook-off. Employees Participate in the October Fun Run/Walk & Roll
      Runners begin the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. The course covers a 2-mile stretch starting on Durand Road, runs up DeFrance Road to North Perimeter Road and back. The Ames Fitness Center is committed to fostering an inclusive community and encourages everyone, regardless of fitness level, experience, or capability, to participate in these events. Invite your colleagues and come join the fun at future Fun Run/Walk & Roll events! Contact Marco or Orion at the Fitness Center 650-604-5804 or visit https://q.arc.nasa.gov/content/fitness-center for more information about these events and other Fitness Center classes and programs.
      Runners begin the October 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. NASA photo by Don Richey Runners and organizers of the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. Eric Yee front row left, David King, Nicholas Wogan, Sarah Nickerson, Jose Ignacio de Alvear Cardenas, Lara Lash, Bob Windhorst, Jon Hill, and Marco Santoyo front row right. Orion Spellman back row left, Marton Mester, Alejandro Serrano Borlaff, Evan Crowe, Jackson Donaldson, Jonathan Kaldani, Clayton Elder, and Collin Payne back row right.NASA photo by Don RIchey In Memoriam …

      Laura Lewis, Science Directorate Project Manager, Dies
      Laura Lewis passed away on Sept. 24 after a three-year fight against cancer.  Laura spent her entire 34-year career at NASA. She was a member of the Science Directorate at Ames. Laura launched her career at Kennedy Space Center. She then moved to Headquarters to work in the Space Life Sciences Office. She joined the Ames community in 1995.
      Laura Lewis Laura is survived by her husband and fellow Ames colleague, Bruce Yost, three children, and their three German Shepards.
      A passionate animal lover, Laura found ways throughout her life to care for and advocate for animals. In lieu of flowers, the family suggests donations be sent to animal shelters or animal rescue organizations such as the San Jose Humane Society or Sunshine Canyon Dog Rescue.
      Laura was a valued member of the NASA community. We extend our condolences to her family, friends, and colleagues.

      Former Technology Partnerships Manager Robin Orans Passes Away

      Robin Orans Robin Orans passed away on Sept. 27.  She was the technology partnership manager at Ames for 27 years. Prior to that role, she served as the software release authority for the center. She retired from NASA in 2015.
      Throughout Robin’s career at Ames she received numerous awards including NASA Ames Total Award for pivotal efforts in organizing the Technical SUPPORT Paper Contest for Woman and serving as the Technical Committee Paper Contest Committee in 1992; NASA Ames 2001 Technical Support Honor Award; NASA Ames 2015 Administrative Professional Honor Award; and NASA Ames 2016 Exceptional Service Medal.
      We value the many years Robin dedicated to the NASA mission and send our condolences to her family, friends, and colleagues.

      Joseph (Jay) Skiles, Senior Research Scientist, Dies
      Dr. Joseph (Jay) W. Skiles III passed away at home on October 22. He had a long and varied career studying, teaching, and lecturing about environmental sciences. He received a B.S. in biology from the University of Redlands, an M.S. in Botany from the University of Idaho, and a Ph.D. in Ecology and Evolutionary Biology from the University of California, Irvine.
      Joseph (Jay) Skiles Jay worked with a number of organizations, including SETI, Johnson Controls, and NASA Ames. While at Ames, he sponsored and tutored select groups of students, lectured internationally, evaluated various projects from schools and agencies, and initiated and developed scientific investigative projects on his own. He has worked modeling the effects of elevated atmospheric CO2 on ecosystems and modeling perturbations of Arctic ecosystems. He studied terrestrial plant responses to increased ultraviolet radiation in the polar regions of Earth and the effects of low intensity microwave fields on vascular plants. He used supercomputers to do ecosystem modeling.
      While not at work, Jay volunteered with the Mountain View Police Department and played golf. He was active with the local Masonic lodge and was a pretty fair clarinetist. Jay was born in Bakersfield, California, to Rev. Joseph W. Skiles II and Genevieve Eola Moody Skiles. He is survived by his brother Stephen, his sister Elizabeth, and eight nieces and nephews.
      Private service arrangements are pending.

      View the full article
    • By European Space Agency
      Week in images: 04-08 November 2024
      Discover our week through the lens
      View the full article
    • By NASA
      1 Min Read Oral History with Jon A. McBride, 1943 – 2024
      Jon A. McBride with the IMAX large format camera in the middeck during the STS-41G mission. Credits: NASA Selected as an astronaut in 1978, Jon A. McBride served as the pilot for STS 41-G, launched October 5, 1984, the first shuttle mission to carry a full crew of seven. His other NASA assignments included lead chase pilot for the maiden voyage of Columbia and CAPCOM for three early shuttle flights.
      Read more about Jon McBride
      Jon A. McBride Oral History, 4/17/12 NASA Biography More NASA Oral Histories The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
      View the full article
    • By European Space Agency
      Space startups and SMEs can meet ESA’s SME Office at Space Tech Expo, a space technology trade fair and conference in Bremen, Germany from 19–21 November.
      View the full article
  • Check out these Videos

×
×
  • Create New...