Jump to content

Station Science 101: Epigenetics Research in Space


Recommended Posts

  • Publishers
Posted

A growing body of research suggests a link between epigenetic mechanisms and a wide variety of illnesses and behaviors, including cancer, cardiovascular and autoimmune illnesses, and cognitive dysfunction. Epigenetics also plays a role in the changes humans and other living things experience in space.

This phenomenon has become part of studies in a wide variety of fields, including microgravity research conducted aboard the International Space Station.

So just what is epigenetics? According to a paper from the National Institute of Environmental Health Sciences, it includes any process that alters gene activity without changing the actual DNA sequence and that leads to modifications that can pass to offspring. Essentially, it involves information added to the DNA sequence of four bases: adenine (A), guanine (G), cytosine (C), and thymine (T).

The sequence of these bases forms the genetic code for development and functioning – essentially the blueprint for every living thing. Epigenetics changes an organism by changing which genes are expressed – essentially turned on or off – without changing that basic blueprint. In other words, epigenetics results in a change through modification of gene expression rather than alteration of the genetic code itself.

Epigenetic changes can be caused by many outside stimuli, from chemicals to trauma to exercise. And unlike a genetic change or mutation, an epigenetic change can reverse if the stimulus is removed. Many epigenetic changes are positive, or even essential, but some cause serious adverse health and behavioral effects.

Years of analysis have shown that the spaceflight environment changes gene expression in every organism and cell type. Epigenetics could help scientists figure out how that happens and why. Studying epigenetics could reveal the pathway that cells use to adapt and survive in microgravity and reveal ways to control positive changes or prevent negative ones.

The Epigenetics investigation from JAXA (Japan Aerospace Exploration Agency) looked at whether the round worm C. elegans experienced epigenetic changes and if those changes transmitted from one generation to another. Researchers did observe epigenetic changes and concluded that the expression of certain genes, including negative regulators of growth and development, is epigenetically fine-tuned to adapt to microgravity.1

ESA astronaut Samantha Cristoforetti prepares samples for the Epigenetics experiment. Credits: NASA Alt text: Cristoforetti wears a red short-sleeved shirt, olive green pants, and light blue gloves. She is holding a plastic pouch connected by a tube to a panel on the wall of the space station that has multiple cords and displays. The walls around her other devices, cords, and screens.
ESA astronaut Samantha Cristoforetti prepares samples for the Epigenetics experiment.
NASA

JAXA’s Mouse Epigenetics studied altered gene expression patterns in mice and DNA changes in their offspring. The investigation identified genetic alterations that happen after exposure to the microgravity environment of space.

An Italian Space Agency study of the bone loss experienced by astronauts on extended missions is associated with epigenetic alterations. Role of the Endocannabinoid System in Pluripotent Human Stem Cell Reprogramming under Microgravity Conditions (SERISM) evaluated the formation of bone cells in microgravity using human blood-derived stem cells as a model. Researchers reported specific epigenetic changes that occurred in the cells in space.2

APEX-03 plates containing Arabidopsis thaliana plants. Credits: NASA Alt text: Plants with green leaves amid a tangle of white roots are visible inside a clear plastic box with an orange clip on each side. White labels can be seen through the box.
APEX-03 plates containing Arabidopsis thaliana plants.
NASA

One epigenetic process that researchers can detect is methylation, the addition or removal of a methyl group (CH3) into DNA bases, predominantly where cytosine or C bases occur consecutively. The APEX-03-1 and APEX-03-2 experiments examined DNA methylation and gene expression in Arabidopsis thaliana plants grown from seeds aboard the space station and found widespread changes in patterns of gene expression.3 They also observed epigenetic changes, indicating that they play a role in a plant’s physiological adaptation to spaceflight.4

APEX-04 confirmed this finding. When investigators disrupted the ability of a plant to make those epigenetic changes, that plant struggled more in space.5 Plant Habitat-03 then examined whether these epigenetic changes pass to subsequent generations.

In general, this work showed that plants change gene expression patterns when they experience strange environments and use epigenetic processes to mark genes that help prepare the next generation for the same environment. Those markers show which genes are important for the plant to live in space. Researchers can use that information to breed plants better adapted to space and to harsh environments on Earth.

The MinION DNA sequencer in use on the space station. Credits: NASA Alt text: A blue-gloved hand holds a rectangular palm-sized device. The lid of the device is open revealing a small yellow cell and some labels. There is a USB  cord coming out of the end of the device.
The MinION DNA sequencer in use on the space station.
NASA

Expect to see more research on epigenetics on orbit now that more tools are available to provide the ability to immediately sequence DNA at the level that reveals epigenetic changes such as methylation. Traditional DNA sequencers do not provide that level of information without prior processing of the sample, but the space station’s MinION can. Scientists can use these tools to get real-time snapshots of changes as they are happening and potentially how they are passed to subsequent generations.

Melissa Gaskill

International Space Station Program Science Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

Citations:

1 Higashitani A, Hashizume T, Takiura M, Higashitani N, Teranishi M, Oshima R, Yano S, Kuriyama K, Higashibata A. Histone deacetylase HDA-4-mediated epigenetic regulation in space-flown C. elegans. npj Microgravity. 2021 September 1; 7(1): 33. DOI: 10.1038/s41526-021-00163-7.PMID: 34471121.

2 Gambacurta A, Merlini G, Ruggiero C, Diedenhofen G, Battista N, Bari M, Balsamo M, Piccirillo S, Valentini G, Mascetti G, Maccarrone M. Human osteogenic differentiation in Space: proteomic and epigenetic clues to better understand osteoporosis. Scientific Reports. 2019 June 6; 9(1): 8343. DOI: 10.1038/s41598-019-44593-6.PMID: 31171801.

3 Nakashima J, Pattathil S, Avci U, Chin S, Sparks JA, Hahn MG, Gilroy S, Blancaflor EB. Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflight. npj Microgravity. 2023 August 22; 9(1): 1-13. DOI: 10.1038/s41526-023-00312-0.

4 Zhou M, Sng NJ, LeFrois CE, Paul AL, Ferl RJ. Epigenomics in an extraterrestrial environment: Organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics. 2019 March 12; 20(1): 205. DOI: 10.1186/s12864-019-5554-z.

5 Paul AL, Haveman NJ, Califar B, Ferl RJ. Epigenomic regulators elongator complex subunit 2 and methyltransferase 1 differentially condition the spaceflight response in Arabidopsis. Frontiers in Plant Science. 2021 September 13; 12691790. DOI: 10.3389/fpls.2021.691790.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
      Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
      Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
      NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
      The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
      Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 21
      2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
      Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
      Monday, Sept. 22
      11:30 a.m. – In-person media one-on-one interviews with the following:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
      Tuesday, Sept. 23
      6:40 a.m. – Launch coverage begins on NASA+,  Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
      7:32 a.m. – Launch
      Audio-Only Coverage
      Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
      For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:


      X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
      Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
      Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
      For more information about these missions, visit:
      https://www.nasa.gov/sun
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
  • Check out these Videos

×
×
  • Create New...