Jump to content

NASA’s Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies


Recommended Posts

  • Publishers
Posted
6 Min Read

NASA’s Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies

Nineteen Webb images of face-on spiral galaxies are combined in a mosaic. Some appear within squares, and others horizontal or vertical rectangles. Many galaxies have blue hazes toward the centers, and all have orange spiral arms. Many have clear bar shaped-structures at their centers, but a few have spirals that begin at their cores. Some of the galaxies’ arms form clear spiral shapes, while others are more irregular. Some of the galaxies’ arms appear to rotate clockwise and others counterclockwise. Most galaxy cores are centered, but a few appear toward an image’s edge. Most galaxies appear to extend beyond the captured observations. The galaxies shown, listed in alphabetical order, are IC 5332, NGC 628, NGC 1087, NGC1300, NGC 1365, NGC 1385, NGC 1433, NGC 1512, NGC 1566, NGC 1672, NGC 2835, NGC 3351, NGC 3627, NGC 4254, NGC 4303, NGC 4321, NGC 4535, NGC 5068, and NGC 7496.
Webb’s set of 19 PHANGS images of face-on spiral galaxies.
Credits:
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

It’s oh-so-easy to be absolutely mesmerized by these spiral galaxies. Follow their clearly defined arms, which are brimming with stars, to their centers, where there may be old star clusters and – sometimes – active supermassive black holes. Only NASA’s James Webb Space Telescope can deliver highly detailed scenes of nearby galaxies in a combination of near- and mid-infrared light – and a set of these images was publicly released today.

Nineteen Webb images of face-on spiral galaxies are combined in a mosaic. Some appear within squares, and others horizontal or vertical rectangles. Many galaxies have blue hazes toward the centers, and all have orange spiral arms. Many have clear bar shaped-structures at their centers, but a few have spirals that begin at their cores. Some of the galaxies’ arms form clear spiral shapes, while others are more irregular. Some of the galaxies’ arms appear to rotate clockwise and others counterclockwise. Most galaxy cores are centered, but a few appear toward an image’s edge. Most galaxies appear to extend beyond the captured observations. The galaxies shown, listed in alphabetical order, are IC 5332, NGC 628, NGC 1087, NGC1300, NGC 1365, NGC 1385, NGC 1433, NGC 1512, NGC 1566, NGC 1672, NGC 2835, NGC 3351, NGC 3627, NGC 4254, NGC 4303, NGC 4321, NGC 4535, NGC 5068, and NGC 7496.
The James Webb Space Telescope observed 19 nearby face-on spiral galaxies in near- and mid-infrared light as part of its contributions to the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program. PHANGS also includes images and data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, which included observations taken in ultraviolet, visible, and radio light.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team, Elizabeth Wheatley (STScI)

These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, including observations in ultraviolet, visible, and radio light. Webb’s near- and mid-infrared contributions have provided several new puzzle pieces.

Two observations of a portion of the galaxy NGC 628 are split diagonally, with Webb’s observations at top left and Hubble’s at bottom right. The galaxy’s core is roughly centered and the galaxy’s arms appear to rotate counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. In Webb’s image, the spiny spiral arms are composed of many filaments in shades of orange, with prominent dark gray or black “bubbles,” and there is a blue haze near the core. In Hubble’s image, the spiral arms are a mix of bright blue star clusters, pink star forming areas and dark brown dust lanes, and the core is a pale yellow.
Face-on spiral galaxy, NGC 628, is split diagonally in this image: The James Webb Space Telescope’s observations appear at top left, and the Hubble Space Telescope’s on bottom right. Webb and Hubble’s images show a striking contrast, an inverse of darkness and light. Why? Webb’s observations combine near- and mid-infrared light and Hubble’s showcase visible light. Dust absorbs ultraviolet and visible light, and then re-emits it in the infrared. In Webb’s images, we see dust glowing in infrared light. In Hubble’s images, dark regions are where starlight is absorbed by dust.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
hubble view of ngc628
Hubble’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light yellow haze that takes up about a quarter of the view. The core is brightest at the center, washing out light from other objects. Delicate spiral arms start near the center and extend to the edges, rotating counterclockwise. There is more brown dust beginning at the center, but as the arms extend outward, brown dust lanes alternate with diffuse lines of bright blue stars. Throughout the spiral arms, there are bright pink patches of star-forming clusters.
NASA, STScI
Webb’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light blue haze that takes up about a quarter of the view. In this circular core is the brightest blue area. Within the core are populations of older stars, represented by many pinpoints of blue light. Spiny spiral arms made of stars, gas, and dust also start at the center, largely starting in the wider area of the blue haze. The spiral arms extend to the edges, rotating counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. The arms of the galaxy are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some additional bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. A prominent dark “bubble” appears to the top left of the blue core. And a wider, elliptical “bubble” to the bottom right.
Spiral galaxy NGC 628 is 32 million light-years away in the constellation Pisces. Webb’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light blue haze that takes up about a quarter of the view. In this circular core is the brightest blue area. Within the core are populations of older stars, represented by many pinpoints of blue light. Spiny spiral arms made of stars, gas, and dust also start at the center, largely starting in the wider area of the blue haze. The spiral arms extend to the edges, rotating counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. The arms of the galaxy are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some additional bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. A prominent dark “bubble” appears to the top left of the blue core. And a wider, elliptical “bubble” to the bottom right.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

“Webb’s new images are extraordinary,” said Janice Lee, a project scientist for strategic initiatives at the Space Telescope Science Institute in Baltimore. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Excitement rapidly spread throughout the team as the Webb images flooded in. “I feel like our team lives in a constant state of being overwhelmed – in a positive way – by the amount of detail in these images,” added Thomas Williams, a postdoctoral researcher at the University of Oxford in the United Kingdom.

Webb’s image of NGC 1300 shows a face-on barred spiral galaxy anchored by its central region, which is circular and shows a bright white point at the center with a light yellow circle around it. The central core is tiny compared to the rest of the galaxy. The core extends into the galaxy’s prominent diagonal bar structure, which is filled with a blue haze of stars. Orange dust filaments cross the bar, extending diagonally to the top and bottom, connecting the yellow circle in the central core to the galaxy’s spiral arms. There are two distinct orange spiral arms made of stars, gas, and dust that start at the edges of the bar and rotate counterclockwise. Together, the arm and bars form a backward S shape. The spiral arms are largely orange, ranging from dark to bright orange. Scattered across the packed scene are very few bright blue pinpoints of light. There are vast areas between where the orange spiral arms wrap that appear black. The top left and bottom right edges are dark black and there are some larger red and blue points of light, some that appear like disks seen from the side.
Spiral galaxy NGC 1300 is 69 million light-years away in the constellation Eridanus.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
Webb’s image of NGC 1087 shows a densely populated face-on spiral galaxy anchored by its central region, which takes the shape of a short light yellow line that is about a fifth of the length of the galaxy. Filamentary spiral arms made of stars, gas, and dust start at the center and extend to the top and bottom edges, rotating clockwise. There is so much light in this region that the spiral arms of the galaxy look muddled. They are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some bright blue pinpoints of light, but they appear more clearly in areas where it is dark gray or black. Several smaller “bubbles” where it’s black appears throughout the galaxy. The edges of the scene are dark black and there are some larger bright blue points of light, along with a few pink shapes, likely background galaxies.
Spiral galaxy NGC 1087 is 80 million light-years away in the constellation Cetus.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Follow the Spiral Arms

Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images, which sparkle in blue tones. Some stars are spread throughout the spiral arms, but others are clumped tightly together in star clusters.

The telescope’s MIRI (Mid-Infrared Instrument) data highlights glowing dust, showing us where it exists around and between stars. It also spotlights stars that haven’t yet fully formed – they are still encased in the gas and dust that feed their growth, like bright red seeds at the tips of dusty peaks. “These are where we can find the newest, most massive stars in the galaxies,” said Erik Rosolowsky, a professor of physics at the University of Alberta in Edmonton, Canada.

Webb’s image of the galaxy NGC 1566 shows a densely populated face-on spiral galaxy anchored by its slightly oval central region, consisting of a core and small bar structure, which has a light blue haze of stars that covers about a quarter of the view. Two prominent spiny spiral arms made of stars, gas, and dust also start at the center, within the blue haze, and extend to the edges, rotating counterclockwise. The spiral arms of the galaxy are largely orange, ranging from dark to bright orange. The brightest areas of the arms are two large arcs that start at the central region and stretch up to the top and bottom. Scattered across the packed scene are innumerable bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. There are bright pink patches of light toward the outer regions of the spiral arms.
Spiral galaxy NGC 1566 is 60 million light-years away in the constellation Dorado.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Something else that amazed astronomers? Webb’s images show large, spherical shells in the gas and dust. “These holes may have been created by one or more stars that exploded, carving out giant holes in the interstellar material,” explained Adam Leroy, a professor of astronomy at the Ohio State University in Columbus.

Now, trace the spiral arms to find extended regions of gas that appear red and orange. “These structures tend to follow the same pattern in certain parts of the galaxies,” Rosolowsky added. “We think of these like waves, and their spacing tells us a lot about how a galaxy distributes its gas and dust.” Study of these structures will provide key insights about how galaxies build, maintain, and shut off star formation.

Webb’s image of NGC 2835 shows a densely populated face-on spiral galaxy anchored by its small central region, which is immediately engulfed in the orange spiral arms. A blue glow of stars begins at the core and spreads outward. Spiny orange spiral arms made of stars, gas, and dust start at the center and extend to the edges, rotating counterclockwise and taking up most of the area. Tiny pinpoints of blue light, which are stars or star clusters, are scattered across the image, but are easiest to spot where there appear to be black bubbles within the orange dust. The spiral arms of the galaxy are largely orange, ranging from dark to bright orange. In a few areas, there are bright orange patches of light within the orange spiral arms, mainly toward the outer edges of the spiral arms. Toward the bottom are some larger pink and blue points of light, some are likely background galaxies that appear like disks seen from the side.
Spiral galaxy NGC 2835 is 35 million light-years away in the constellation Hydra.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Dive Into the Interior

Evidence shows that galaxies grow from inside out – star formation begins at galaxies’ cores and spreads along their arms, spiraling away from the center. The farther a star is from the galaxy’s core, the more likely it is to be younger. In contrast, the areas near the cores that look lit by a blue spotlight are populations of older stars.

What about galaxy cores that are awash in pink-and-red diffraction spikes? “That’s a clear sign that there may be an active supermassive black hole,” said Eva Schinnerer, a staff scientist at the Max Planck Institute for Astronomy in Heidelberg, Germany. “Or, the star clusters toward the center are so bright that they have saturated that area of the image.”

Webb’s image of NGC 1512 shows a face-on barred spiral galaxy anchored by its central region, which is circular and shows a bright white point at the center with blue and yellow circles around it. Outside the core is a large bar structure filled with a haze of blue stars, forming a rough parallelogram shape and taking up about a quarter of the area. The bar is crossed by orange filaments made of stars, gas, and dust that extend diagonally to the top left and bottom right. Outside this, the thick orange spiral arms form a rough oval, and within them there are smaller oval areas that appear black. The spiral arms are largely orange, ranging from dark to bright orange and extend beyond the edges of the image. There are many larger blue stars and slightly larger pink points of light spread throughout. Two larger foreground stars with at least six diffraction spikes are at top center and bottom center.
Spiral galaxy NGC 1512 is 30 million light-years away in the constellation Horologium.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
Webb’s image of NGC 1385 shows a messy face-on spiral galaxy in shades of white, yellow, orange, and red. There’s a bright yellow arc-shaped region toward the center, but it is very difficult to see a spiral shape. Scattered across the scene are some bright blue pinpoints of light, but they appear more clearly in areas where it is dark gray or black, below and to the right of the yellow central arc in blobs, with some individual blue points of light across the image. There are many bright red or orange regions in the orange arms, speckled irregularly throughout. The edges of the scene are dark black, containing several very faint pink, blue, and red blobs.
Spiral galaxy NGC 1385 is 30 million light-years away in the constellation Fornax.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Research Galore

There are many avenues of research that scientists can begin to pursue with the combined PHANGS data, but the unprecedented number of stars Webb resolved are a great place to begin. “Stars can live for billions or trillions of years,” Leroy said. “By precisely cataloging all types of stars, we can build a more reliable, holistic view of their life cycles.”

In addition to immediately releasing these images, the PHANGS team has also released the largest catalog to date of roughly 100,000 star clusters. “The amount of analysis that can be done with these images is vastly larger than anything our team could possibly handle,” Rosolowsky emphasized. “We’re excited to support the community so all researchers can contribute.”

Webb’s image of the galaxy NGC 1672 shows a portion of a face-on barred spiral galaxy anchored by its central region, which is circular and has a bright white point at the center with blue and then yellow circular regions around it, anchored to the right of center. A roughly horizontal bar structure made of a blue haze of stars and filamentary orange dust lanes tilts up slightly and takes up the majority of the image. Two spiny orange spiral arms made of stars, gas, and dust connect to the end of the bar and extend outward, rotating clockwise. The spiral arms are largely orange, ranging from dark to bright orange and extend beyond the edges of the image. They are brightest orange away from the bright central region at left and right, like knots of orange beads strung together. The spiral shape of the galaxy is less apparent in this view, with the arms looking more like irregular waves in an ocean’s tides. There are many more dark or black regions between where the orange gas and dust of the bar and spiral arms appear. Scattered across the scene are some bright blue pinpoints of light.
Spiral galaxy NGC 1672 is 60 million light-years away in the constellation Dorado.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
Webb Telescopes view face-on of spiral galaxy NGC 4254.
Webb Telescopes view face-on of spiral galaxy NGC 4254.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

See the full set of 19 images from both Webb and Hubble and download them at full resolution.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Right click the images in this article to open a larger version in a new tab/window.

Download full resolution images for this article from the Space Telescope Science Institute.

Access These Images on the MAST Archive

Media Contacts

Laura Betz/NASA laura.e.betz@nasa.gov, Rob Gutro/NASArob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Claire Blome – cblome@stsci.edu, Christine Pulliam/STScI cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Galaxy Types

Galaxy Evolution

Infrared Astronomy

Related Article: NASA’s Webb Reveals Intricate Networks of Gas and Dust in Nearby Galaxies

PHANGS Website for Researchers

Access These Images on the MAST Archive

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What is a galaxy?

Types of galaxies

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed. 
      A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
      The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.  
      “We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
      Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks. 
      “It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
      Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth. 
      Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
      The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By NASA
      ESA/Webb, NASA & CSA, P. Zeidler This new image of star cluster NGC 602, released on Dec. 17, 2024, combines data from NASA’s Chandra X-ray Observatory with a previously released image from the agency’s James Webb Space Telescope. Webb data provide the ring-like outline of the “wreath,” while X-rays from Chandra (red) show young, massive stars that are illuminating the wreath, sending high-energy light into interstellar space.
      NGC 602 lies on the outskirts of the Small Magellanic Cloud, which is one of the closest galaxies to the Milky Way, about 200,000 light-years from Earth. 
      See another new, festive image: the “Christmas tree cluster.”
      Image credit: X-ray: NASA/CXC; Infrared: ESA/Webb, NASA & CSA, P. Zeilder, E.Sabbi, A. Nota, M. Zamani; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand
      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 7 Min Read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
      This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. Credits:
      NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made with the agency’s Hubble Space Telescope more than 20 years ago.
      In 2003, Hubble provided evidence of a massive planet around a very old star, almost as old as the universe. Such stars possess only small amounts of heavier elements that are the building blocks of planets. This implied that some planet formation happened when our universe was very young, and those planets had time to form and grow big inside their primordial disks, even bigger than Jupiter. But how? This was puzzling.
      To answer this question, researchers used Webb to study stars in a nearby galaxy that, much like the early universe, lacks large amounts of heavy elements. They found that not only do some stars there have planet-forming disks, but that those disks are longer-lived than those seen around young stars in our Milky Way galaxy.
      “With Webb, we have a really strong confirmation of what we saw with Hubble, and we must rethink how we model planet formation and early evolution in the young universe,” said study leader Guido De Marchi of the European Space Research and Technology Centre in Noordwijk, Netherlands.
      Image A: Protoplanetary Disks in NGC 346 (NIRCam Image)
      This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. With its relative lack of elements heavier than hydrogen and helium, the NGC 346 cluster serves as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe. Ten, small, yellow circles overlaid on the image indicate the positions of the ten stars surveyed in this study. NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) A Different Environment in Early Times
      In the early universe, stars formed from mostly hydrogen and helium, and very few heavier elements such as carbon and iron, which came later through supernova explosions.
      “Current models predict that with so few heavier elements, the disks around stars have a short lifetime, so short in fact that planets cannot grow big,” said the Webb study’s co-investigator Elena Sabbi, chief scientist for Gemini Observatory at the National Science Foundation’s NOIRLab in Tucson. “But Hubble did see those planets, so what if the models were not correct and disks could live longer?”
      To test this idea, scientists trained Webb on the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. In particular, they examined the massive, star-forming cluster NGC 346, which also has a relative lack of heavier elements. The cluster served as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe.
      Hubble observations of NGC 346 from the mid 2000s revealed many stars about 20 to 30 million years old that seemed to still have planet-forming disks around them. This went against the conventional belief that such disks would dissipate after 2 or 3 million years.
      “The Hubble findings were controversial, going against not only empirical evidence in our galaxy but also against the current models,” said De Marchi. “This was intriguing, but without a way to obtain spectra of those stars, we could not really establish whether we were witnessing genuine accretion and the presence of disks, or just some artificial effects.”
      Now, thanks to Webb’s sensitivity and resolution, scientists have the first-ever spectra of forming, Sun-like stars and their immediate environments in a nearby galaxy.
      “We see that these stars are indeed surrounded by disks and are still in the process of gobbling material, even at the relatively old age of 20 or 30 million years,” said De Marchi. “This also implies that planets have more time to form and grow around these stars than in nearby star-forming regions in our own galaxy.”
      Image B: Protoplanetary Disks in NGC 346 Spectra (NIRSpec)
      This graph shows, on the bottom left in yellow, a spectrum of one of the 10 target stars in this study (as well as accompanying light from the immediate background environment). Spectral fingerprints of hot atomic helium, cold molecular hydrogen, and hot atomic hydrogen are highlighted. On the top left in magenta is a spectrum slightly offset from the star that includes only light from the background environment. This second spectrum lacks a spectral line of cold molecular hydrogen.
      On the right is the comparison of the top and bottom lines. This comparison shows a large peak in the cold molecular hydrogen coming from the star but not its nebular environment. Also, atomic hydrogen shows a larger peak from the star. This indicates the presence of a protoplanetary disk immediately surrounding the star. The data was taken with the microshutter array on the James Webb Space Telescope’s NIRSpec (Near-Infrared Spectrometer) instrument. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A New Way of Thinking
      This finding refutes previous theoretical predictions that when there are very few heavier elements in the gas around the disk, the star would very quickly blow away the disk. So the disk’s life would be very short, even less than a million years. But if a disk doesn’t stay around the star long enough for the dust grains to stick together and pebbles to form and become the core of a planet, how can planets form?
      The researchers explained that there could be two distinct mechanisms, or even a combination, for planet-forming disks to persist in environments scarce in heavier elements.
      First, to be able to blow away the disk, the star applies radiation pressure. For this pressure to be effective, elements heavier than hydrogen and helium would have to reside in the gas. But the massive star cluster NGC 346 only has about ten percent of the heavier elements that are present in the chemical composition of our Sun. Perhaps it simply takes longer for a star in this cluster to disperse its disk.
      The second possibility is that, for a Sun-like star to form when there are few heavier elements, it would have to start from a larger cloud of gas. A bigger gas cloud will produce a bigger disk. So there is more mass in the disk and therefore it would take longer to blow the disk away, even if the radiation pressure were working in the same way.
      “With more matter around the stars, the accretion lasts for a longer time,” said Sabbi. “The disks take ten times longer to disappear. This has implications for how you form a planet, and the type of system architecture that you can have in these different environments. This is so exciting.”
      The science team’s paper appears in the Dec. 16 issue of The Astrophysical Journal.
      Image C: NGC 346: Hubble and Webb Observations
      Image Before/After The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt manages the telescope and mission operations. Lockheed Martin Space, based in Denver also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Past releases on NGC 346: Webb NIRCam image and MIRI image
      Article: Highlighting other Webb Star Formation Discoveries
      Simulation Video: Planetary Systems and Origins of Life
      Animation Video: Exploring star and planet formation (English), and in Spanish
      More Images of NGC 346 on AstroPix
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a planet?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es un planeta?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Dec 15, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Stars The Universe View the full article
    • By NASA
      Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read
      Hubble Images a Grand Spiral
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 5643. ESA/Hubble & NASA, A. Riess, D. Thilker, D. De Martin (ESA/Hubble), M. Zamani (ESA/Hubble) This NASA/ESA Hubble Space Telescope image features the glorious spiral galaxy NGC 5643, which is located roughly 40 million light-years away in the constellation Lupus, the Wolf. NGC 5643 is a grand design spiral, which refers to the galaxy’s symmetrical form with two large, winding spiral arms that are clearly visible. Bright-blue stars define the galaxy’s spiral arms, along with lacy reddish-brown dust clouds and pink star-forming regions.
      As fascinating as the galaxy appears at visible wavelengths, some of NGC 5643’s most interesting features are invisible to the human eye. Ultraviolet and X-ray images and spectra of NGC 5643 show that the galaxy hosts an active galactic nucleus: an especially bright galactic core powered by a feasting supermassive black hole. When a supermassive black hole ensnares gas from its surroundings, the gas collects in a disk that heats up to hundreds of thousands of degrees. The superheated gas shines brightly across the electromagnetic spectrum, but especially at X-ray wavelengths.
      NGC 5643’s active galactic nucleus isn’t the brightest source of X-rays in the galaxy, though. Researchers using ESA’s XMM-Newton discovered an even brighter X-ray-emitting object, called NGC 5643 X-1, on the galaxy’s outskirts. What could be a more powerful source of X-rays than a supermassive black hole? Surprisingly, the answer appears to be a much smaller black hole! While the exact identity of NGC 5643 X-1 is unknown, evidence points to a black hole that is about 30 times more massive than the Sun. Locked in an orbital dance with a companion star, the black hole ensnares gas from its stellar companion, creating a superheated disk that outshines the NGC 5643’s galactic core.
      NGC 5643 was also the subject of a previous Hubble image. The new image incorporates additional wavelengths of light, including the red color that is characteristic of gas heated by massive young stars.
      Explore More

      Hubble’s Galaxies


      Science Behind the Discoveries: Black Holes


      Hubble’s Black Holes


      Hubble Focus E-Book: Galaxies through Space and Time

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Dec 12, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble Posters



      Hubble by the Numbers


      View the full article
    • By NASA
      ESA/Hubble & NASA, R. Windhorst, W. Keel This NASA/ESA Hubble Space Telescope image features a spiral galaxy, named UGC 10043. We don’t see the galaxy’s spiral arms because we are seeing it from the side. Located roughly 150 million light-years from Earth in the constellation Serpens, UGC 10043 is one of the somewhat rare spiral galaxies that we see edge-on.
      This edge-on viewpoint makes the galaxy’s disk appear as a sharp line through space, with its prominent dust lanes forming thick bands of clouds that obscure our view of the galaxy’s glow. If we could fly above the galaxy, viewing it from the top down, we would see this dust scattered across UGC 10043, possibly outlining its spiral arms. Despite the dust’s obscuring nature, some active star-forming regions shine out from behind the dark clouds. We can also see that the galaxy’s center sports a glowing, almost egg-shaped ‘bulge’, rising far above and below the disk. All spiral galaxies have a bulge similar to this one as part of their structure. These bulges hold stars that orbit the galactic center on paths above and below the whirling disk; it’s a feature that isn’t normally obvious in pictures of galaxies. The unusually large size of this bulge compared to the galaxy’s disk is possibly due to UGC 10043 siphoning material from a nearby dwarf galaxy. This may also be why its disk appears warped, bending up at one end and down at the other.
      Like most full-color Hubble images, this image is a composite, made up of several individual snapshots taken by Hubble at different times, each capturing different wavelengths of light. One notable aspect of this image is that the two sets of data that comprise this image were collected 23 years apart, in 2000 and 2023! Hubble’s longevity doesn’t just afford us the ability to produce new and better images of old targets; it also provides a long-term archive of data which only becomes more and more useful to astronomers.
      View the full article
  • Check out these Videos

×
×
  • Create New...