Members Can Post Anonymously On This Site
NASA’s Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca
NASA’s Mars rover Curiosity used its Mast Camera (Mastcam) to acquire this image showing a part of Volcán Peña Blanca from about 10 meters away (about 33 feet). It is already possible to see the different layers and make out that some of them are parallel, while others are at an angle. Curiosity acquired this image on July 6, 2025 — Sol 4591, or Martian day 4,591 of the Mars Science Laboratory mission — at 10:13:13 UTC. NASA/JPL-Caltech/MSSS Written by Susanne P. Schwenzer, Professor of Planetary Mineralogy at The Open University, UK
Earth planning date: Monday, July 7, 2025
A few planning sols ago, we spotted a small ridge in the landscape ahead of us. Ridges and structures that are prominently raised above the landscape are our main target along this part of Curiosity’s traverse. There are many hypotheses on how they formed, and water is one of the likely culprits involved. That is because water reacts with the original minerals, moves the compounds around and some precipitate as minerals in the pore spaces, which is called “cement” by sedimentologists, and generally known as one mechanism to make a rock harder. It’s not the only one, so the Curiosity science team is after all the details at this time to assess whether water indeed was responsible for the more resistant nature of the ridges. Spotting one that is so clearly raised prominently above the landscape — and in easy reach of the rover, both from the distance but also from the path that leads up to it — was therefore very exciting. In addition, the fact that we get a side view of the structure as well as a top view adds to the team’s ability to read the geologic record of this area. “Outcrops,” as we call those places, are one of the most important tools for any field geologist, including Curiosity and team!
Therefore, the penultimate drive stopped about 10 meters away (about 33 feet) from the structure to get a good assessment of where exactly to direct the rover (see the blog post by my colleague Abby). You can see an example of the images Curiosity took with its Mast Camera above; if you want to see them all, they are on the raw images page (and by the time you go, there may be even more images that we took in today’s plan.
With all the information from the last parking spot, the rover drivers parked Curiosity in perfect operating distance for all instruments. In direct view of the rover was a part of Volcán Peña Blanca that shows several units; this blogger counts at least three — but I am a mineralogist, not a sedimentologist! I am really looking forward to the chemical data we will get in this plan. My sedimentologist colleagues found the different angles of smaller layers in the three bigger layers especially interesting, and will look at the high-resolution images from the MAHLI instrument very closely.
With all that in front of us, Curiosity has a very full plan. APXS will get two measurements, the target “Parinacota” is on the upper part of the outcrop and we can even clean it from the dust with the brush, aka DRT. MAHLI will get close-up images to see finer structures and maybe even individual grains. The second APXS target, called “Wila Willki,” is located in the middle part of the outcrop and will also be documented by MAHLI. The third activity of MAHLI will be a so-called dog’s-eye view of the outcrop. For this, the arm reaches very low down to align MAHLI to directly face the outcrop, to get a view of the structures and even a peek underneath some of the protruding ledges. The team is excitedly anticipating the arrival of those images. Stay tuned; you can also find them in the raw images section as soon as we have them!
ChemCam is joining in with two LIBS targets — the target “Pichu Pichu” is on the upper part of the outcrop, and the target “Tacume” is on the middle part. After this much of close up looks, ChemCam is pointing the RMI to the mid-field to look at another of the raised features in more detail and into the far distance to see the upper contact of the boxwork unit with the next unit above it. Mastcam will first join the close up looks and take a large mosaic to document all the details of Volcán Peña Blanca, and to document the LIBS targets, before looking into the distance at two places where we see small troughs around exposed bedrock.
Of course, there are also atmospheric observations in the plan; it’s aphelion cloud season and dust is always of interest. The latter is regularly monitored by atmosphere opacity experiments, and we keep searching for dust devils to understand where, how and why they form and how they move. Curiosity will be busy, and we are very much looking forward to understanding this interesting feature, which is one piece of the puzzle to understand this area we call the boxwork area.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jul 10, 2025 Related Terms
Blogs Explore More
3 min read Continuing the Quest for Clays
Article
2 days ago
2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca
Article
3 days ago
2 min read Curiosity Blog, Sol 4588: Ridges and troughs
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Share
Details
Last Updated Jul 10, 2025 Related Terms
Blogs Explore More
3 min read Continuing the Quest for Clays
Article
2 days ago
2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca
Article
3 days ago
2 min read Curiosity Blog, Sol 4588: Ridges and troughs
Article
3 days ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera) revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.
Take a tour through this section of the Cat’s Paw Nebula.
Image credit: NASA, ESA, CSA, STScI
View the full article
-
By European Space Agency
To mark its third year of highly productive science, astronomers used the NASA/ESA/CSA James Webb Space Telescope to scratch beyond the surface of the Cat’s Paw Nebula (NGC 6334), a massive, local star-forming region.
View the full article
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 8 Min Read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary
NASA’s James Webb Space Telescope’s near-infrared view of the Cat’s Paw Nebula reveals mini “toe beans.” Massive young stars are carving the gas and dust while their bright starlight is producing a bright nebulous glow. Eventually this turbulent region will quench star formation. Full image below. Credits:
NASA, ESA, CSA, STScI. It’s the cat’s meow! To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). Focusing Webb’s NIRCam (Near-Infrared Camera) on a single “toe bean” within this active star-forming region revealed a subset of mini toe beans, which appear to contain young stars shaping the surrounding gas and dust.
Webb’s look at this particular area of the Cat’s Paw Nebula just scratches the surface of the telescope’s three years of groundbreaking science.
“Three years into its mission, Webb continues to deliver on its design – revealing previously hidden aspects of the universe, from the star formation process to some of the earliest galaxies,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “As it repeatedly breaks its own records, Webb is also uncovering unknowns for new generations of flagship missions to tackle. Whether it’s following up on the mysteries of dark matter with NASA’s nearly complete Nancy Grace Roman Space Telescope, or narrowing our search for life to Earth-like planets with the Habitable Worlds Observatory, the questions Webb has raised are just as exciting as the answers it’s giving us.”
Image: Cat’s Paw Nebula (NIRCam Image)
NASA’s James Webb Space Telescope’s near-infrared view of the Cat’s Paw Nebula reveals mini “toe beans.” Massive young stars are carving the gas and dust while their bright starlight is producing a bright nebulous glow. Eventually this turbulent region will quench star formation. NASA, ESA, CSA, STScI. Star Formation Flex
The progression from a large molecular cloud to massive stars entails multiple steps, some of which are still not well understood by astronomers. Located approximately 4,000 light-years away in the constellation Scorpius, the Cat’s Paw Nebula offers scientists the opportunity to study the turbulent cloud-to-star process in great detail. Webb’s observation of the nebula in near-infrared light builds upon previous studies by NASA’s Hubble and retired Spitzer Space Telescope in visible- and infrared-light, respectively.
With its sharp resolution, Webb shows never-before-seen structural details and features: Massive young stars are carving away at nearby gas and dust, while their bright starlight is producing a bright nebulous glow represented in blue. It’s a temporary scene where the disruptive young stars, with their relatively short lives and luminosity, have a brief but important role in the region’s larger story. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.
Opera House’s Intricate Structure
Start with the toe bean at top center, which is nicknamed the “Opera House” for its circular, tiered-like structure. The primary drivers for the area’s cloudy blue glow are most likely toward its bottom: either the light from the bright yellowish stars or from a nearby source still hidden behind the dense, dark brown dust.
Just below the orange-brown tiers of dust is a bright yellow star with diffraction spikes. While this massive star has carved away at its immediate surroundings, it has been unable to push the gas and dust away to greater distances, creating a compact shell of surrounding material.
Look closely to notice small patches, like the tuning fork-shaped area to the Opera House’s immediate left, that contain fewer stars. These seemingly vacant zones indicate the presence of dense foreground filaments of dust that are home to still-forming stars and block the light of stars in the background.
Spotlight on Stars
Toward the image’s center are small, fiery red clumps scattered amongst the brown dust. These glowing red sources mark regions where massive star formation is underway, albeit in an obscured manner.
Some massive blue-white stars, like the one in the lower left toe bean, seem to be more sharply resolved than others. This is because any intervening material between the star and the telescope has been dissipated by stellar radiation.
Near the bottom of that toe bean are small, dense filaments of dust. These tiny clumps of dust have managed to remain despite the intense radiation, suggesting that they are dense enough to form protostars. A small section of yellow at the right notes the location of a still-enshrouded massive star that has managed to shine through intervening material.
Across this entire scene are many small yellow stars with diffraction spikes. Bright blue-white stars are in the foreground of this Webb image, but some may be a part of the more expansive Cat’s Paw Nebula area.
One eye-catching aspect of this Webb image is the bright, red-orange oval at top right. Its low count of background stars implies it is a dense area just beginning its star-formation process. A couple of visible and still-veiled stars are scattered throughout this region, which are contributing to the illumination of the material in the middle. Some still-enveloped stars leave hints of their presence, like a bow shock at the bottom left, which indicates an energetic ejection of gas and dust from a bright source.
Further explore this subset of toe beans by embarking on a narrated tour or getting closer to the image. We also invite you to reminisce about Webb’s three years of science observations.
Video A (Narrated Visualization): Cosmic Caverns in the Cat’s Paw Nebula
This visualization explores a subset of toe bean-reminiscent structures within a section of the Cat’s Paw Nebula, a massive, local star-forming region located approximately 4,000 light-years away in the constellation Scorpius. This image by NASA’s James Webb Space Telescope in near-infrared light was released in honor of the telescope’s third science operations anniversary. Since it began science operations in July 2022, Webb’s observations of our universe have wowed scientists and the public alike.
Glide into the lower left toe bean, moving past many small yellow stars along the way, where filaments of gas and dust frame the cavernous area. The region’s nebulous glow, represented in blue, is from the bright light of massive young stars.
Float toward the top toe bean, which is nicknamed the “Opera House” for its circular, tiered-like structure. As you move, you’ll pass plumes of orange-brown dust that vary in density and small, fiery red clumps where star formation is occurring, albeit in an obscured manner.
Credits: Producers: Greg Bacon (STScI), Frank Summers (STScI); Image Processing: Joe DePasquale (STScI); Music: Joe DePasquale (STScI); Designers: Ralf Crawford (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Alyssa Pagan (STScI); Images: NASA, ESA, CSA, STScI; ESO/VISTA.
Video B: Zoom into the Cat’s Paw Nebula
This zoom-in video shows the location of the Cat’s Paw Nebula on the sky. It begins with a ground-based photo by the late astrophotographer Akira Fujii, then shows views from the Digitized Sky Survey. The video then hones in on a select portion of the sky to reveal a European Southern Observatory image of the Cat’s Paw Nebula in visible light. The video continues to zoom in on a section of the Cat’s Paw, which gradually transitions to the stunning image captured by NASA’s James Webb Space Telescope in near-infrared light.
Credits: Video: NASA, ESA, CSA, Danielle Kirshenblat (STScI); Acknowledgement: Akira Fujii, DSS, VISTA. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Abigail Major – amajor@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
View other images of the Cat’s Paw Nebula
Animation Video: “How Dense Pillars Form in Molecular Clouds”
Explore a larger view of the Cat’s Paw Nebula: ViewSpace Video
Read more: Webb Star Formation Discoveries
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Este artículo en español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Stars Stories
Universe
Share
Details
Last Updated Jul 09, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Emission Nebulae Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars The Universe View the full article
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
Here are just a few noteworthy examples.
1. The universe evolved significantly faster than we previously thought.
Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
Image: JADES deep field
A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
Image: Spectrum of WASP-107 b
A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
Image: PHANGS Phantom Galaxy (M74/NGC 628)
A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
8. Some planets might be able to survive the death of their star.
When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
Video: Water plume and torus from Enceladus
A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
—-
In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Exoplanets
Universe
Share
Details
Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.