Jump to content

NASA’s Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies


Recommended Posts

  • Publishers
Posted
6 Min Read

NASA’s Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies

Nineteen Webb images of face-on spiral galaxies are combined in a mosaic. Some appear within squares, and others horizontal or vertical rectangles. Many galaxies have blue hazes toward the centers, and all have orange spiral arms. Many have clear bar shaped-structures at their centers, but a few have spirals that begin at their cores. Some of the galaxies’ arms form clear spiral shapes, while others are more irregular. Some of the galaxies’ arms appear to rotate clockwise and others counterclockwise. Most galaxy cores are centered, but a few appear toward an image’s edge. Most galaxies appear to extend beyond the captured observations. The galaxies shown, listed in alphabetical order, are IC 5332, NGC 628, NGC 1087, NGC1300, NGC 1365, NGC 1385, NGC 1433, NGC 1512, NGC 1566, NGC 1672, NGC 2835, NGC 3351, NGC 3627, NGC 4254, NGC 4303, NGC 4321, NGC 4535, NGC 5068, and NGC 7496.
Webb’s set of 19 PHANGS images of face-on spiral galaxies.
Credits:
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

It’s oh-so-easy to be absolutely mesmerized by these spiral galaxies. Follow their clearly defined arms, which are brimming with stars, to their centers, where there may be old star clusters and – sometimes – active supermassive black holes. Only NASA’s James Webb Space Telescope can deliver highly detailed scenes of nearby galaxies in a combination of near- and mid-infrared light – and a set of these images was publicly released today.

Nineteen Webb images of face-on spiral galaxies are combined in a mosaic. Some appear within squares, and others horizontal or vertical rectangles. Many galaxies have blue hazes toward the centers, and all have orange spiral arms. Many have clear bar shaped-structures at their centers, but a few have spirals that begin at their cores. Some of the galaxies’ arms form clear spiral shapes, while others are more irregular. Some of the galaxies’ arms appear to rotate clockwise and others counterclockwise. Most galaxy cores are centered, but a few appear toward an image’s edge. Most galaxies appear to extend beyond the captured observations. The galaxies shown, listed in alphabetical order, are IC 5332, NGC 628, NGC 1087, NGC1300, NGC 1365, NGC 1385, NGC 1433, NGC 1512, NGC 1566, NGC 1672, NGC 2835, NGC 3351, NGC 3627, NGC 4254, NGC 4303, NGC 4321, NGC 4535, NGC 5068, and NGC 7496.
The James Webb Space Telescope observed 19 nearby face-on spiral galaxies in near- and mid-infrared light as part of its contributions to the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program. PHANGS also includes images and data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, which included observations taken in ultraviolet, visible, and radio light.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team, Elizabeth Wheatley (STScI)

These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, including observations in ultraviolet, visible, and radio light. Webb’s near- and mid-infrared contributions have provided several new puzzle pieces.

Two observations of a portion of the galaxy NGC 628 are split diagonally, with Webb’s observations at top left and Hubble’s at bottom right. The galaxy’s core is roughly centered and the galaxy’s arms appear to rotate counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. In Webb’s image, the spiny spiral arms are composed of many filaments in shades of orange, with prominent dark gray or black “bubbles,” and there is a blue haze near the core. In Hubble’s image, the spiral arms are a mix of bright blue star clusters, pink star forming areas and dark brown dust lanes, and the core is a pale yellow.
Face-on spiral galaxy, NGC 628, is split diagonally in this image: The James Webb Space Telescope’s observations appear at top left, and the Hubble Space Telescope’s on bottom right. Webb and Hubble’s images show a striking contrast, an inverse of darkness and light. Why? Webb’s observations combine near- and mid-infrared light and Hubble’s showcase visible light. Dust absorbs ultraviolet and visible light, and then re-emits it in the infrared. In Webb’s images, we see dust glowing in infrared light. In Hubble’s images, dark regions are where starlight is absorbed by dust.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
hubble view of ngc628
Hubble’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light yellow haze that takes up about a quarter of the view. The core is brightest at the center, washing out light from other objects. Delicate spiral arms start near the center and extend to the edges, rotating counterclockwise. There is more brown dust beginning at the center, but as the arms extend outward, brown dust lanes alternate with diffuse lines of bright blue stars. Throughout the spiral arms, there are bright pink patches of star-forming clusters.
NASA, STScI
Webb’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light blue haze that takes up about a quarter of the view. In this circular core is the brightest blue area. Within the core are populations of older stars, represented by many pinpoints of blue light. Spiny spiral arms made of stars, gas, and dust also start at the center, largely starting in the wider area of the blue haze. The spiral arms extend to the edges, rotating counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. The arms of the galaxy are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some additional bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. A prominent dark “bubble” appears to the top left of the blue core. And a wider, elliptical “bubble” to the bottom right.
Spiral galaxy NGC 628 is 32 million light-years away in the constellation Pisces. Webb’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light blue haze that takes up about a quarter of the view. In this circular core is the brightest blue area. Within the core are populations of older stars, represented by many pinpoints of blue light. Spiny spiral arms made of stars, gas, and dust also start at the center, largely starting in the wider area of the blue haze. The spiral arms extend to the edges, rotating counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. The arms of the galaxy are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some additional bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. A prominent dark “bubble” appears to the top left of the blue core. And a wider, elliptical “bubble” to the bottom right.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

“Webb’s new images are extraordinary,” said Janice Lee, a project scientist for strategic initiatives at the Space Telescope Science Institute in Baltimore. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Excitement rapidly spread throughout the team as the Webb images flooded in. “I feel like our team lives in a constant state of being overwhelmed – in a positive way – by the amount of detail in these images,” added Thomas Williams, a postdoctoral researcher at the University of Oxford in the United Kingdom.

Webb’s image of NGC 1300 shows a face-on barred spiral galaxy anchored by its central region, which is circular and shows a bright white point at the center with a light yellow circle around it. The central core is tiny compared to the rest of the galaxy. The core extends into the galaxy’s prominent diagonal bar structure, which is filled with a blue haze of stars. Orange dust filaments cross the bar, extending diagonally to the top and bottom, connecting the yellow circle in the central core to the galaxy’s spiral arms. There are two distinct orange spiral arms made of stars, gas, and dust that start at the edges of the bar and rotate counterclockwise. Together, the arm and bars form a backward S shape. The spiral arms are largely orange, ranging from dark to bright orange. Scattered across the packed scene are very few bright blue pinpoints of light. There are vast areas between where the orange spiral arms wrap that appear black. The top left and bottom right edges are dark black and there are some larger red and blue points of light, some that appear like disks seen from the side.
Spiral galaxy NGC 1300 is 69 million light-years away in the constellation Eridanus.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
Webb’s image of NGC 1087 shows a densely populated face-on spiral galaxy anchored by its central region, which takes the shape of a short light yellow line that is about a fifth of the length of the galaxy. Filamentary spiral arms made of stars, gas, and dust start at the center and extend to the top and bottom edges, rotating clockwise. There is so much light in this region that the spiral arms of the galaxy look muddled. They are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some bright blue pinpoints of light, but they appear more clearly in areas where it is dark gray or black. Several smaller “bubbles” where it’s black appears throughout the galaxy. The edges of the scene are dark black and there are some larger bright blue points of light, along with a few pink shapes, likely background galaxies.
Spiral galaxy NGC 1087 is 80 million light-years away in the constellation Cetus.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Follow the Spiral Arms

Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images, which sparkle in blue tones. Some stars are spread throughout the spiral arms, but others are clumped tightly together in star clusters.

The telescope’s MIRI (Mid-Infrared Instrument) data highlights glowing dust, showing us where it exists around and between stars. It also spotlights stars that haven’t yet fully formed – they are still encased in the gas and dust that feed their growth, like bright red seeds at the tips of dusty peaks. “These are where we can find the newest, most massive stars in the galaxies,” said Erik Rosolowsky, a professor of physics at the University of Alberta in Edmonton, Canada.

Webb’s image of the galaxy NGC 1566 shows a densely populated face-on spiral galaxy anchored by its slightly oval central region, consisting of a core and small bar structure, which has a light blue haze of stars that covers about a quarter of the view. Two prominent spiny spiral arms made of stars, gas, and dust also start at the center, within the blue haze, and extend to the edges, rotating counterclockwise. The spiral arms of the galaxy are largely orange, ranging from dark to bright orange. The brightest areas of the arms are two large arcs that start at the central region and stretch up to the top and bottom. Scattered across the packed scene are innumerable bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. There are bright pink patches of light toward the outer regions of the spiral arms.
Spiral galaxy NGC 1566 is 60 million light-years away in the constellation Dorado.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Something else that amazed astronomers? Webb’s images show large, spherical shells in the gas and dust. “These holes may have been created by one or more stars that exploded, carving out giant holes in the interstellar material,” explained Adam Leroy, a professor of astronomy at the Ohio State University in Columbus.

Now, trace the spiral arms to find extended regions of gas that appear red and orange. “These structures tend to follow the same pattern in certain parts of the galaxies,” Rosolowsky added. “We think of these like waves, and their spacing tells us a lot about how a galaxy distributes its gas and dust.” Study of these structures will provide key insights about how galaxies build, maintain, and shut off star formation.

Webb’s image of NGC 2835 shows a densely populated face-on spiral galaxy anchored by its small central region, which is immediately engulfed in the orange spiral arms. A blue glow of stars begins at the core and spreads outward. Spiny orange spiral arms made of stars, gas, and dust start at the center and extend to the edges, rotating counterclockwise and taking up most of the area. Tiny pinpoints of blue light, which are stars or star clusters, are scattered across the image, but are easiest to spot where there appear to be black bubbles within the orange dust. The spiral arms of the galaxy are largely orange, ranging from dark to bright orange. In a few areas, there are bright orange patches of light within the orange spiral arms, mainly toward the outer edges of the spiral arms. Toward the bottom are some larger pink and blue points of light, some are likely background galaxies that appear like disks seen from the side.
Spiral galaxy NGC 2835 is 35 million light-years away in the constellation Hydra.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Dive Into the Interior

Evidence shows that galaxies grow from inside out – star formation begins at galaxies’ cores and spreads along their arms, spiraling away from the center. The farther a star is from the galaxy’s core, the more likely it is to be younger. In contrast, the areas near the cores that look lit by a blue spotlight are populations of older stars.

What about galaxy cores that are awash in pink-and-red diffraction spikes? “That’s a clear sign that there may be an active supermassive black hole,” said Eva Schinnerer, a staff scientist at the Max Planck Institute for Astronomy in Heidelberg, Germany. “Or, the star clusters toward the center are so bright that they have saturated that area of the image.”

Webb’s image of NGC 1512 shows a face-on barred spiral galaxy anchored by its central region, which is circular and shows a bright white point at the center with blue and yellow circles around it. Outside the core is a large bar structure filled with a haze of blue stars, forming a rough parallelogram shape and taking up about a quarter of the area. The bar is crossed by orange filaments made of stars, gas, and dust that extend diagonally to the top left and bottom right. Outside this, the thick orange spiral arms form a rough oval, and within them there are smaller oval areas that appear black. The spiral arms are largely orange, ranging from dark to bright orange and extend beyond the edges of the image. There are many larger blue stars and slightly larger pink points of light spread throughout. Two larger foreground stars with at least six diffraction spikes are at top center and bottom center.
Spiral galaxy NGC 1512 is 30 million light-years away in the constellation Horologium.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
Webb’s image of NGC 1385 shows a messy face-on spiral galaxy in shades of white, yellow, orange, and red. There’s a bright yellow arc-shaped region toward the center, but it is very difficult to see a spiral shape. Scattered across the scene are some bright blue pinpoints of light, but they appear more clearly in areas where it is dark gray or black, below and to the right of the yellow central arc in blobs, with some individual blue points of light across the image. There are many bright red or orange regions in the orange arms, speckled irregularly throughout. The edges of the scene are dark black, containing several very faint pink, blue, and red blobs.
Spiral galaxy NGC 1385 is 30 million light-years away in the constellation Fornax.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Research Galore

There are many avenues of research that scientists can begin to pursue with the combined PHANGS data, but the unprecedented number of stars Webb resolved are a great place to begin. “Stars can live for billions or trillions of years,” Leroy said. “By precisely cataloging all types of stars, we can build a more reliable, holistic view of their life cycles.”

In addition to immediately releasing these images, the PHANGS team has also released the largest catalog to date of roughly 100,000 star clusters. “The amount of analysis that can be done with these images is vastly larger than anything our team could possibly handle,” Rosolowsky emphasized. “We’re excited to support the community so all researchers can contribute.”

Webb’s image of the galaxy NGC 1672 shows a portion of a face-on barred spiral galaxy anchored by its central region, which is circular and has a bright white point at the center with blue and then yellow circular regions around it, anchored to the right of center. A roughly horizontal bar structure made of a blue haze of stars and filamentary orange dust lanes tilts up slightly and takes up the majority of the image. Two spiny orange spiral arms made of stars, gas, and dust connect to the end of the bar and extend outward, rotating clockwise. The spiral arms are largely orange, ranging from dark to bright orange and extend beyond the edges of the image. They are brightest orange away from the bright central region at left and right, like knots of orange beads strung together. The spiral shape of the galaxy is less apparent in this view, with the arms looking more like irregular waves in an ocean’s tides. There are many more dark or black regions between where the orange gas and dust of the bar and spiral arms appear. Scattered across the scene are some bright blue pinpoints of light.
Spiral galaxy NGC 1672 is 60 million light-years away in the constellation Dorado.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team
Webb Telescopes view face-on of spiral galaxy NGC 4254.
Webb Telescopes view face-on of spiral galaxy NGC 4254.
NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

See the full set of 19 images from both Webb and Hubble and download them at full resolution.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Right click the images in this article to open a larger version in a new tab/window.

Download full resolution images for this article from the Space Telescope Science Institute.

Access These Images on the MAST Archive

Media Contacts

Laura Betz/NASA laura.e.betz@nasa.gov, Rob Gutro/NASArob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Claire Blome – cblome@stsci.edu, Christine Pulliam/STScI cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Galaxy Types

Galaxy Evolution

Infrared Astronomy

Related Article: NASA’s Webb Reveals Intricate Networks of Gas and Dust in Nearby Galaxies

PHANGS Website for Researchers

Access These Images on the MAST Archive

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What is a galaxy?

Types of galaxies

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Planetary Nebula NGC 1514 (MIRI image) View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read With NASA’s Webb, Dying Star’s Energetic Display Comes Into Full Focus
      NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region. Credits:
      NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) Gas and dust ejected by a dying star at the heart of NGC 1514 came into complete focus thanks to mid-infrared data from NASA’s James Webb Space Telescope. Its rings, which are only detected in infrared light, now look like “fuzzy” clumps arranged in tangled patterns, and a network of clearer holes close to the central stars shows where faster material punched through.
      “Before Webb, we weren’t able to detect most of this material, let alone observe it so clearly,” said Mike Ressler, a researcher and project scientist for Webb’s MIRI (Mid-Infrared Instrument) at NASA’s Jet Propulsion Laboratory in southern California. He discovered the rings around NGC 1514 in 2010 when he examined the image from NASA’s Wide-field Infrared Survey Explorer (WISE). “With MIRI’s data, we can now comprehensively examine the turbulent nature of this nebula,” he said.
      This scene has been forming for at least 4,000 years — and will continue to change over many more millennia. At the center are two stars that appear as one in Webb’s observation, and are set off with brilliant diffraction spikes. The stars follow a tight, elongated nine-year orbit and are draped in an arc of dust represented in orange.
      One of these stars, which used to be several times more massive than our Sun, took the lead role in producing this scene. “As it evolved, it puffed up, throwing off layers of gas and dust in in a very slow, dense stellar wind,” said David Jones, a senior scientist at the Institute of Astrophysics on the Canary Islands, who proved there is a binary star system at the center in 2017.
      Once the star’s outer layers were expelled, only its hot, compact core remained. As a white dwarf star, its winds both sped up and weakened, which might have swept up material into thin shells.
      Image A: Planetary Nebula NGC 1514 (MIRI Image)
      NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region. NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) Image B: Planetary Nebula NGC 1514 (WISE and Webb Images Side by Side)
      Two infrared views of NGC 1514. At left is an observation from NASA’s Wide-field Infrared Survey Explorer (WISE). At right is a more refined image from NASA’s James Webb Space Telescope. NASA, ESA, CSA, STScI, NASA-JPL, Caltech, UCLA, Michael Ressler (NASA-JPL), Dave Jones (IAC) Its Hourglass Shape
      Webb’s observations show the nebula is tilted at a 60-degree angle, which makes it look like a can is being poured, but it’s far more likely that NGC 1514 takes the shape of an hourglass with the ends lopped off. Look for hints of its pinched waist near top left and bottom right, where the dust is orange and drifts into shallow V-shapes.
      What might explain these contours? “When this star was at its peak of losing material, the companion could have gotten very, very close,” Jones said. “That interaction can lead to shapes that you wouldn’t expect. Instead of producing a sphere, this interaction might have formed these rings.”
      Though the outline of NGC 1514 is clearest, the hourglass also has “sides” that are part of its three-dimensional shape. Look for the dim, semi-transparent orange clouds between its rings that give the nebula body.
      A Network of Dappled Structures
      The nebula’s two rings are unevenly illuminated in Webb’s observations, appearing more diffuse at bottom left and top right. They also look fuzzy, or textured. “We think the rings are primarily made up of very small dust grains,” Ressler said. “When those grains are hit by ultraviolet light from the white dwarf star, they heat up ever so slightly, which we think makes them just warm enough to be detected by Webb in mid-infrared light.”
      In addition to dust, the telescope also revealed oxygen in its clumpy pink center, particularly at the edges of the bubbles or holes.
      NGC 1514 is also notable for what is absent. Carbon and more complex versions of it, smoke-like material known as polycyclic aromatic hydrocarbons, are common in planetary nebulae (expanding shells of glowing gas expelled by stars late in their lives). Neither were detected in NGC 1514. More complex molecules might not have had time to form due to the orbit of the two central stars, which mixed up the ejected material. A simpler composition also means that the light from both stars reaches much farther, which is why we see the faint, cloud-like rings.
      What about the bright blue star to the lower left with slightly smaller diffraction spikes than the central stars? It’s not part of this nebula. In fact, this star lies closer to us.
      This planetary nebula has been studied by astronomers since the late 1700s. Astronomer William Herschel noted in 1790 that NGC 1514 was the first deep sky object to appear genuinely cloudy — he could not resolve what he saw into individual stars within a cluster, like other objects he cataloged. With Webb, our view is considerably clearer.
      NGC 1514 lies in the Taurus constellation approximately 1,500 light-years from Earth.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      To learn more about Webb, visit: https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science Advisor
      Michael Ressler (NASA-JPL)
      Related Information
      Read more about other planetary nebulae
      Watch: ViewSpace video about planetary nebulae
      View images of other planetary nebulae on AstroPix
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Apr 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Binary Stars Goddard Space Flight Center Nebulae Planetary Nebulae Science & Research Stars The Universe White Dwarfs View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
      NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. Full illustration below. Credits:
      NASA, ESA, CSA, R. Crawford (STScI) Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative surrounding what is believed to be the first star observed in the act of swallowing a planet. The new findings suggest that the star actually did not swell to envelop a planet as previously hypothesized. Instead, Webb’s observations show the planet’s orbit shrank over time, slowly bringing the planet closer to its demise until it was engulfed in full.
      “Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said Ryan Lau, lead author of the new paper and astronomer at NSF NOIRLab (National Science Foundation National Optical-Infrared Astronomy Research Laboratory) in Tuscon, Arizona. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”
      Two instruments aboard Webb conducted the post-mortem of the scene – Webb’s MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph). The researchers were able to come to their conclusion using a two-pronged investigative approach.
      Image A: Planetary Engulfment Illustration
      NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. NASA, ESA, CSA, R. Crawford (STScI) Constraining the How
      The star at the center of this scene is located in the Milky Way galaxy about 12,000 light-years away from Earth.
      The brightening event, formally called ZTF SLRN-2020, was originally spotted as a flash of optical light using the Zwicky Transient Facility at the Palomar Observatory in San Diego, California. Data from NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) showed the star actually brightened in the infrared a year before the optical light flash, hinting at the presence of dust. This initial 2023 investigation led researchers to believe that the star was more Sun-like, and had been in the process of aging into a red giant over hundreds of thousands of years, slowly expanding as it exhausted its hydrogen fuel.
      However, Webb’s MIRI told a different story. With powerful sensitivity and spatial resolution, Webb was able to precisely measure the hidden emission from the star and its immediate surroundings, which lie in a very crowded region of space. The researchers found the star was not as bright as it should have been if it had evolved into a red giant, indicating there was no swelling to engulf the planet as once thought.
      Reconstructing the Scene
      Researchers suggest that, at one point, the planet was about Jupiter-sized, but orbited quite close to the star, even closer than Mercury’s orbit around our Sun. Over millions of years, the planet orbited closer and closer to the star, leading to the catastrophic consequence.
      “The planet eventually started to graze the star’s atmosphere. Then it was a runaway process of falling in faster from that moment,” said team member Morgan MacLeod of the Harvard-Smithsonian Center for Astrophysics and the Massachusetts Institute of Technology in Cambridge, Massachusetts. “The planet, as it’s falling in, started to sort of smear around the star.”
      In its final splashdown, the planet would have blasted gas away from the outer layers of the star. As it expanded and cooled off, the heavy elements in this gas condensed into cold dust over the next year.
      Inspecting the Leftovers
      While the researchers did expect an expanding cloud of cooler dust around the star, a look with the powerful NIRSpec revealed a hot circumstellar disk of molecular gas closer in. Furthermore, Webb’s high spectral resolution was able to detect certain molecules in this accretion disk, including carbon monoxide.
      “With such a transformative telescope like Webb, it was hard for me to have any expectations of what we’d find in the immediate surroundings of the star,” said Colette Salyk of Vassar College in Poughkeepsie, New York, an exoplanet researcher and co-author on the new paper. “I will say, I could not have expected seeing what has the characteristics of a planet-forming region, even though planets are not forming here, in the aftermath of an engulfment.”
      The ability to characterize this gas opens more questions for researchers about what actually happened once the planet was fully swallowed by the star.
      “This is truly the precipice of studying these events. This is the only one we’ve observed in action, and this is the best detection of the aftermath after things have settled back down,” Lau said. “We hope this is just the start of our sample.”
      These observations, taken under Guaranteed Time Observation program 1240, which was specifically designed to investigate a family of mysterious, sudden, infrared brightening events, were among the first Target of Opportunity programs performed by Webb. These types of study are reserved for events, like supernova explosions, that are expected to occur, but researchers don’t exactly know when or where. NASA’s space telescopes are part of a growing, international network that stands ready to witness these fleeting changes, to help us understand how the universe works.
      Researchers expect to add to their sample and identify future events like this using the upcoming Vera C. Rubin Observatory and NASA’s Nancy Grace Roman Space Telescope, which will survey large areas of the sky repeatedly to look for changes over time.
      The team’s findings appear today in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit: https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about Webb’s impact on exoplanet research
      Video: How to Study Exoplanets
      Learn more about exoplanets
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Stars



      Universe


      Share








      Details
      Last Updated Apr 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Studies a Nearby Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the picturesque spiral galaxy NGC 4941. ESA/Hubble & NASA, D. Thilker This NASA/ESA Hubble Space Telescope image features the picturesque spiral galaxy NGC 4941, which lies about 67 million light-years from Earth in the constellation Virgo (The Maiden). Because this galaxy is nearby, cosmically speaking, Hubble’s keen instruments are able to pick out exquisite details such as individual star clusters and filamentary clouds of gas and dust.
      The data used to construct this image were collected as part of an observing program that investigates the star formation and stellar feedback cycle in nearby galaxies. As stars form in dense, cold clumps of gas, they begin to influence their surroundings. Stars heat and stir up the gas clouds in which they form through winds, starlight, and — eventually, for massive stars — by exploding as supernovae. These processes are collectively called stellar feedback, and they influence the rate at which a galaxy can form new stars.
      As it turns out, stars aren’t the only entities providing feedback in NGC 4941. At the heart of this galaxy lies an active galactic nucleus: a supermassive black hole feasting on gas. As the black hole amasses gas from its surroundings, the gas swirls into a superheated disk that glows brightly at wavelengths across the electromagnetic spectrum. Similar to stars — but on a much, much larger scale — active galactic nuclei shape their surroundings through winds, radiation, and powerful jets, altering not only star formation but also the evolution of the galaxy as a whole.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Apr 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble’s Galaxies



      35 Years of Hubble Images


      View the full article
    • By NASA
      Explore HubbleHubble Home OverviewAbout Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & BenefitsHubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts ScienceHubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky ObservatoryHubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb TeamHubble Team Career Aspirations Hubble Astronauts NewsHubble News Social Media Media Resources MultimediaMultimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More35th Anniversary Online Activities 3 Min Read Hubble Spots Stellar Sculptors in Nearby Galaxy
      This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. Credits: ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) As part of ESA/Hubble’s 35th anniversary celebrations, ESA is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      This new image showcases the dazzling young star cluster NGC 346. Although both the James Webb Space Telescope and Hubble have released images of NGC 346 previously, this image includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
      This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) NGC 346 is in the Small Magellanic Cloud, a satellite galaxy of the Milky Way that lies 200,000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early universe.
      NGC 346 is home to more than 2,500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are sculpted by the luminous stars in the cluster.
      Hubble’s exquisite sensitivity and resolution were instrumental in uncovering the secrets of NGC 346’s star formation. Using two sets of observations taken 11 years apart, researchers traced the motions of NGC 346’s stars, revealing them to be spiraling in toward the center of the cluster. This spiraling motion arises from a stream of gas from outside of the cluster that fuels star formation in the center of the turbulent cloud.
      The inhabitants of this cluster are stellar sculptors, carving out a bubble within the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace, dispersing the surrounding nebula.
      The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot, young stars like those in NGC 346. The presence of this nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble NGC 346 Images and Science
      Download the image above

      NASA’s Hubble Finds Spiraling Stars, Providing Window into Early Universe

      Young Stars Sculpt Gas with Powerful Outflows in the Small Magellanic Cloud

      Hubble’s Black and White View

      Infant Stars in the Small Magellanic Cloud

      Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster

      Share
      Details
      Last Updated Apr 04, 2025 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Contact Media
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov


      Bethany Downer
      ESA/Hubble Chief Science Communications Officer
      bethany.downer@esahubble.org


      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae Stars The Universe Related Links
      ESA/Hubble’s 35th anniversary celebrations Release on ESA’s website Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Exploring the Birth of Stars
      Hubble’s 35th Anniversary
      Hubble News
      View the full article
  • Check out these Videos

×
×
  • Create New...