Jump to content

Satellite communications for safer and greener aviation


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Two robotic arms wrapped in gold material sitting on top of a black and silver box.Naval Research Laboratory NASA and the Defense Advanced Research Projects Agency (DARPA) have signed an interagency agreement to collaborate on a satellite servicing demonstration in geosynchronous Earth orbit, where hundreds of satellites provide communications, meteorological, national security, and other vital functions. 
      Under this agreement, NASA will provide subject matter expertise to DARPA’s Robotic Servicing of Geosynchronous Satellites (RSGS) program to help complete the technology development, integration, testing, and demonstration. The RSGS servicing spacecraft will advance in-orbit satellite inspection, repair, and upgrade capabilities. 
      NASA is excited to support our long-term partner and advance important technologies poised to benefit commercial, civil, and national objectives. Together, we will make meaningful, long-lasting contributions to the nation’s in-space servicing, assembly, and manufacturing (ISAM) capabilities.
      Pam Melroy
      NASA Deputy Administrator
      NASA will use expertise from the agency’s On-orbit Servicing, Assembly, and Manufacturing 1 project and other relevant efforts to provide hands-on support to RSGS in the areas of space robotics, systems engineering, spacecraft subsystems, integration and testing, operator training, and spaceflight operations. NASA’s involvement in RSGS will continue advancing the agency’s understanding of and experience with complex ISAM systems.
      DARPA will continue to lead the RSGS program, which has already achieved several important milestones, including the completion of two dexterous robotic arms designed for inspection and service that have been stress-tested for an on-orbit environment and the integration of those arms with their associated electronics, tools, and ancillary hardware to produce the fully integrated robotic payload. 
      Media Contact: Jasmine Hopkins
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Space Tech Topics
      STMD Solicitations and Opportunities
      Robotics
      Technology Transfer & Spinoffs
      Artemis
      Share
      Details
      Last Updated Sep 05, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Technology View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      More than 100 scientists will participate in a field campaign involving a research vessel and two aircraft this month to verify the accuracy of data collected by NASA’s new PACE satellite: the Plankton, Aerosol, Cloud, ocean Ecosystem mission. The process of data validation includes researchers comparing PACE data with data collected by similar, Earth-based instruments to ensure the measurements match up. Since the mission’s Feb. 8, 2024 launch, scientists around the world have successfully completed several data validation campaigns; the September deployment — PACE-PAX — is its largest. From sea to sky to orbit, a range of vantage points allow NASA Earth scientists to collect different types of data to better understand our changing planet. Collecting them together, at the same place and the same time, is an important step used to verify the accuracy of satellite data.
      NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite launched in February 2024 and is collecting observations of the ocean and measuring atmospheric particle and cloud properties. This data will help inform scientists and decision makers about the health of Earth’s ocean, land surfaces, and atmosphere and the interactions between them.
      Technicians work to process the NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observatory on a spacecraft dolly in a high bay at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Monday, Dec. 4, 2023. Credit: NASA/Kim Shiflett To make sure the data from PACE’s instruments accurately represent the ocean and the atmosphere, scientists compare (or “validate”) the data collected from orbit with measurements they collect at or near Earth’s surface. The mission’s biggest validation campaign, called PACE Postlaunch Airborne eXperiment (PACE-PAX), began on Sept. 3, 2024, and will last the entire month.
      “If we want to have confidence in the observations from PACE, we need to validate those observations,” said Kirk Knobelspiesse, mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This field campaign is focused on doing just that.”
      Scientists will make measurements both from aircraft and ships. Based out of three locations across California — Marina, Santa Barbara, and NASA’s Armstrong Flight Research Center in Edwards — the campaign includes more than 100 people working in the field and several dozen instruments.
      “This campaign allows us to validate data for both the atmosphere and the ocean, all in one campaign,” said Brian Cairns, deputy mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Institute for Space Studies in New York City.
      On the ocean, ships, including the National Oceanic and Atmospheric Administration (NOAA) research vessel Shearwater, will gather data on ocean biology and the optical properties of the water. Scientists onboard will gather water samples to help define the types of phytoplankton at different locations and their relative abundance, something that PACE’s hyperspectral Ocean Color Instrument measures from orbit.
      Members of the PACE-PAX team – from left to right, Cecile Carlson, Adam Ahern (NOAA), Dennis Hamaker (NPS), Luke Ziemba, and Michael Shook (NASA Langley Research Center) – in front of the Twin Otter aircraft as they prep for the start of the campaign. Credit: Judy Alfter/NASA Overhead, a Twin Otter research aircraft operated by the Naval Postgraduate School in Monterey, California, will collect data on the atmosphere. At altitudes of up to 10,000 feet, the aircraft will sample and measure cloud droplet sizes, aerosol sizes, and the amount of light that those particles scatter and absorb. These are the atmospheric properties that PACE observes with its two polarimeters, SPEXOne and HARP2.
      At a higher altitude — approximately 70,000 feet up — NASA’s ER-2 aircraft will provide a complementary view from above clouds, looking down on the atmosphere and ocean in finer detail than the satellite, but with a narrower view.
      The NASA ER-2 high-altitude aircraft preparing for flight on Jan. 29, 2023. The aircraft is based at NASA’s Armstrong Flight Research Center Building 703 in Palmdale, California.Credit: NASA/Carla Thomas The plane will carry several instruments that are similar to those on PACE, including two prototypes of PACE’s polarimeters, called SPEXAirborne and AirHARP. In addition, two instruments called the Portable Remote Imaging SpectroMeter and Pushbroom Imager for Cloud and Aerosol Research and Development — from NASA’s Jet Propulsion Laboratory in Pasedena, California, and NASA’s Ames Research Center in California’s Silicon Valley, respectively — will measure essentially all the wavelengths of visible light (color). The remote sensing measurements are key for scientists who want to test the methods they use to analyze PACE satellite data.
      Together, the instruments on the ER-2 approximate the data that PACE gathers and complement the in situ measurements from the ocean research vessel and the Twin Otter.
      As the field campaign team gathers data, PACE will be observing the same areas of the ocean surface and atmosphere. Once the campaign is over, scientists will look at the data PACE returned and compare them to the measurements they took from the other three vantage points.
      “Once you launch the satellite, there’s no more tinkering you can do,” said Ivona Cetinic, deputy mission scientist for PACE-PAX and an ocean scientist at NASA Goddard.
      Though the scientists cannot alter the satellite anymore, the algorithms designed to interpret PACE data can be adjusted to make the measurements more accurate. Validation checks from campaigns like PACE-PAX help scientists ensure that PACE will be able to return accurate data about our oceans and atmosphere — critical to better understand our changing planet and its interconnected systems — for years to come.
      “The ocean and atmosphere are such changing environments that it’s really important to validate what we see,” Cetinic said. “Understanding the accuracy of the view from the satellite is important, so we can use the data to answer important questions about climate change.”
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 04, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      5 min read New NASA Satellite To Unravel Mysteries About Clouds, Aerosols
      Article 9 months ago 6 min read NASA Wants to Identify Phytoplankton Species from Space. Here’s Why.
      Article 1 year ago 4 min read NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available
      Article 5 months ago View the full article
    • By NASA
      2 min read
      Hubble Observes An Oddly Organized Satellite
      NASA, ESA, and E. Skillman (University of Minnesota – Twin Cities; Processing: Gladys Kober (NASA/Catholic University of America) Andromeda III is one of at least 13 dwarf satellite galaxies in orbit around the Andromeda galaxy, or Messier 31, the Milky Way’s closest grand spiral galactic neighbor. Andromeda III is a faint, spheroidal collection of old, reddish stars that appears devoid of new star formation and younger stars. In fact, Andromeda III seems to be only about 3 billion years younger than the majority of globular clusters ― dense knots of stars thought to have been mostly born at the same time, which contain some of the oldest stars known in the universe. 
      Astronomers suspect that dwarf spheroidal galaxies may be leftovers of the kind of cosmic objects that were shredded and melded by gravitational interactions to build the halos of large galaxies. Curiously, studies have found that several of the Andromeda Galaxy’s dwarf galaxies, including Andromeda III, orbit in a flat plane around the galaxy, like the planets in our solar system orbit around the Sun. The alignment is puzzling because models of galaxy formation don’t show dwarf galaxies falling into such orderly formations, but rather moving around the galaxy randomly in all directions. As they slowly lose energy, the dwarf galaxies merge into the larger galaxy.
      The odd alignment could be because many of Andromeda’s dwarf galaxies fell into orbit around it as a single group, or because the dwarf galaxies are scraps left over from the merger of two larger galaxies. Either of these theories, which are being researched via NASA’s James Webb Space Telescope, would complicate theories of galaxy formation but also help guide and refine future models. 
      NASA’s Hubble Space Telescope took this image of Andromeda III as part of an investigation into the star formation and chemical enrichment histories of a sample of M31 dwarf spheroidal galaxies that compared their first episodes of star formation to those of Milky Way satellite galaxies.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 29, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      NASA On Sept. 16, 1994, astronaut Mark C. Lee tested out the Simplified Aid for EVA Rescue (SAFER) system, a system designed for use in the event a crew member becomes untethered while conducting a spacewalk. Occurring during the STS-64 mission, this was the first untethered U.S. spacewalk in 10 years.
      This SAFER test was the first phase of a larger SAFER program whose objectives were to establish a common set of requirements for both space shuttle and space station program needs, develop a flight demonstration of SAFER, validate system performance and, finally, develop a production version of SAFER for the shuttle and station programs.
      Image Credit: NASA
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Early research at NASA’s Ames Research Center in California’s Silicon Valley — then known as NACA Ames Aeronautical Laboratory – included ground tests of “hot wing” anti-icing systems on a Lockheed 12A aircraft. NASA works every day to improve air travel – and has been doing so since its creation decades ago. On National Aviation Day, NASA and all fans of aviation get the chance to celebrate the innovative research and development the agency has produced to improve capability and safety in flight.
      NASA’s Ames Research Center in California’s Silicon Valley has a historic legacy in aeronautics research. When the center was founded in 1939 by the National Advisory Committee for Aeronautics (NACA), its early research included working to reduce icing on aircraft wings.
      When ice coats the wings of an airplane, it reduces lift and increases drag, which can cause the aircraft to lose altitude and control. Ames researchers developed different approaches to solve the icing challenge, including a “hot wing” thermal anti-icing system. The system worked by running hot engine exhaust along the leading edges of aircraft wings, warming them and preventing ice buildup. Ames researchers modified aircraft and tested them before traveling to Minnesota, where they were flown in icy conditions.
      Today, many turbine-powered aircraft, like passenger jets, use “bleed air” anti-icing systems, which warm the leading edges of aircraft wings using compressed air from their engines. These systems are built upon the early research and testing done at Ames.
      The legacy of aviation innovation continues at Ames, through aeroscience research like wind tunnel testing, air traffic management, and advanced aircraft systems. 
      Share
      Details
      Last Updated Aug 19, 2024 LocationAeronautics at Ames Related Terms
      Ames Research Center Aeronautics Explore More
      4 min read At Work and Beyond, NASA Employees Find Joy in Aviation
      Article 7 hours ago 2 min read Orville Wright and National Aviation Day
      Article 3 days ago 9 min read Ideas for Celebrating National Aviation Day
      Article 3 days ago View the full article
  • Check out these Videos

×
×
  • Create New...