Jump to content

Overview for NASA’s Northrop Grumman 20th Commercial Resupply Mission


Recommended Posts

  • Publishers
Posted
NASA's Northrop Grumman 20th commercial resupply mission will launch atop a SpaceX Falcon 9 rocket to deliver science and supplies to the International Space Station.
NASA’s Northrop Grumman 20th commercial resupply mission will launch atop a SpaceX Falcon 9 rocket to deliver science and supplies to the International Space Station.
NASA
NASA's Northrop Grumman 20th commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA’s Northrop Grumman 20th commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA

NASA, Northrop Grumman, and SpaceX are targeting 12:29 p.m. EST on Monday, Jan. 29, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. Filled with more than 7,800 pounds of supplies, the Cygnus cargo spacecraft, carried atop the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 20th Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency. The backup launch opportunity will be at 12:07 p.m. Tuesday, Jan. 30.

Live launch coverage will begin at 12:15 p.m. and air on NASA+, NASA Television, the NASA app, YouTube, and on the agency’s website, with prelaunch events starting Wednesday, Jan. 24. Learn how to stream NASA TV through a variety of platforms

Learn more at:  nasa.gov/northropgrumman

Northrop Grumman S.S. Patricia “Patty” Hilliard Robertson

Patricia Robertson was selected as a NASA astronaut in 1998 and scheduled to fly to the International Space Station in 2002, before her untimely death in 2001 from injuries sustained in a private plane crash.
Patricia Robertson was selected as a NASA astronaut in 1998 and scheduled to fly to the International Space Station in 2002, before her untimely death in 2001 from injuries sustained in a private plane crash.
NASA

Arrival & Departure

The Cygnus spacecraft will arrive at the orbiting laboratory at 3:35 a.m. Wednesday, Jan. 31, filled with supplies, hardware, and critical materials to directly support dozens of science and research investigations during Expeditions 70 and 71. NASA astronaut Jasmin Moghbeli will capture Cygnus using the station’s robotic arm, and NASA astronaut Loral O’Hara will act as backup.

After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend about six months connected to the orbiting laboratory before departing in May. Cygnus also provides the operational capability to reboost the station’s orbit.

After departure, the Kentucky Re-entry Probe Experiment-2 (KREPE-2), stowed inside Cygnus, will take measurements to demonstrate a thermal protection system for spacecraft and their contents during re-entry in Earth’s atmosphere, which can be difficult to replicate in ground simulations.

Live coverage of Cygnus’ arrival will begin at 2 a.m., Wednesday, Jan. 31.

NASA astronauts Jasmin Moghbeli and Loral O'Hara will be on duty during the Cygnus cargo craft's aproach and rendezvous. Moghbeli will be at the controls of the Canadarm2 ready to capture Cygnus as O’Hara monitors the vehicle’s arrival.
NASA astronauts Jasmin Moghbeli and Loral O’Hara will be on duty during the Cygnus cargo craft’s aproach and rendezvous. Moghbeli will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as O’Hara monitors the vehicle’s arrival.
NASA

Research Highlights

Scientific investigations traveling in the Cygnus spacecraft include tests of a 3D metal printer, semiconductor manufacturing, and thermal protection systems for re-entry to Earth’s atmosphere.

3D Printing in Space

Samples produced by the Metal 3D Printer prior to launch to the space station.
Samples produced by the Metal 3D Printer prior to launch to the space station.
ESA (European Space Agency)

An investigation from ESA (European Space Agency), Metal 3D Printer tests additive manufacturing or 3D printing of small metal parts in microgravity.

“This investigation provides us with an initial understanding of how such a printer behaves in space,” said Rob Postema of ESA. “A 3D printer can create many shapes, and we plan to print specimens, first to understand how printing in space may differ from printing on Earth and second to see what types of shapes we can print with this technology. In addition, this activity helps show how crew members can work safely and efficiently with printing metal parts in space.”

Results could improve understanding of the functionality, performance, and operations of metal 3D printing in space, as well as the quality, strength, and characteristics of the printed parts. Resupply presents a challenge for future long-duration human missions. Crew members could use 3D printing to create parts for maintenance of equipment on future long-duration spaceflight and on the Moon or Mars, reducing the need to pack spare parts or to predict every tool or object that might be needed, saving time and money at launch.

Advances in metal 3D printing technology also could benefit potential applications on Earth, including manufacturing engines for the automotive, aeronautical, and maritime industries and creating shelters after natural disasters.

Semiconductor Manufacturing in Microgravity

The gas supply modules and production module for Redwire's MSTIC investigation.
The gas supply modules and production module for Redwire’s MSTIC investigation.
Redwire

Manufacturing of Semiconductors and Thin-Film Integrated Coatings (MSTIC) examines how microgravity affects thin films that have a wide range of uses.

This technology could enable autonomous manufacturing to replace the many machines and processes currently used to make a wide range of semiconductors, potentially leading to the development of more efficient and higher-performing electrical devices.

Manufacturing semiconductor devices in microgravity also may improve their quality and reduce the materials, equipment, and labor required. On future long-duration missions, this technology could provide the capability to produce components and devices in space, reducing the need for resupply missions from Earth. The technology also has applications for devices that harvest energy and provide power on Earth.

Modeling Atmospheric Re-Entry

An artist’s rendering of one of the Kentucky Re-entry Probe Experiment-2 (KREPE-2) capsules during re-entry.
An artist’s rendering of one of the Kentucky Re-entry Probe Experiment-2 (KREPE-2) capsules during re-entry.
University of Kentucky

Scientists who conduct research on the space station often return their experiments to Earth for additional analysis and study. But the conditions that spacecraft experience during atmospheric reentry, including extreme heat, can have unintended effects on their contents. Thermal protection systems used to shield spacecraft and their contents are based on numerical models that often lack validation from actual flight, which can lead to significant overestimates in the size of system needed and take up valuable space and mass. Kentucky Re-entry Probe Experiment-2 (KREPE-2), part of an effort to improve thermal protection system technology, uses three capsules outfitted with different heat shield materials and a variety of sensors to obtain data on actual reentry conditions.

“Building on the success of KREPE-1, we have improved the sensors to gather more measurements and improved the communication system to transmit more data,” said Alexandre Martin, principal investigator at the University of Kentucky. “We have the opportunity to test several heat shields provided by NASA that have never been tested before, and another manufactured entirely at the University of Kentucky, also a first.”

The capsules can be outfitted for other atmospheric re-entry experiments, supporting improvements in heat shielding for applications on Earth, such as protecting people and structures from wildfires.

Remote Robotic Surgery

The surgical robot during testing on the ground before launch.
The surgical robot during testing on the ground before launch.
Virtual Incision Corporation

Robotic Surgery Tech Demo tests the performance of a small robot that can be remotely controlled from Earth to perform surgical procedures. Researchers plan to compare procedures in microgravity and on Earth to evaluate the effects of microgravity and time delays between space and ground.

The robot uses two “hands” to grasp and cut rubber bands, which simulate surgical tissue and provide tension that is used to determine where and how to cut, according to Shane Farritor, chief technology officer at Virtual Incision Corp., developer of the investigation with the University of Nebraska.

Longer space missions increase the likelihood that crew members may need surgical procedures, whether simple stiches or an emergency appendectomy. Results from this investigation could support development of robotic systems to perform these procedures. In addition, the availability of a surgeon in rural areas of the country declined nearly a third between 2001 and 2019. Miniaturization and the ability to remotely control the robot help make surgery available anywhere and anytime on Earth. 

NASA has sponsored research on miniature robots for more than 15 years. In 2006, remotely operated robots performed procedures in the underwater NASA’s Extreme Environment Mission Operations (NEEMO) 9 mission. In 2014, a miniature surgical robot performed simulated surgical tasks on the zero-g parabolic airplane.

Growing Cartilage Tissue in Space

The Janus Base Nano-matrix anchor cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).
The Janus Base Nano-matrix anchor cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).
University of Connecticut

Compartment Cartilage Tissue Construct demonstrates two technologies, Janus Base Nano-Matrix and Janus Base Nanopiece. Nano-Matrix is an injectable material that provides a scaffold for formation of cartilage in microgravity, which can serve as a model for studying cartilage diseases. Nanopiece delivers an RNA (ribonucleic acid)-based therapy to combat diseases that cause cartilage degeneration.

Cartilage has a limited ability to self-repair and osteoarthritis is a leading cause of disability in older patients on Earth. Microgravity can trigger cartilage degeneration that mimics the progression of aging-related osteoarthritis but happens more quickly, so research in microgravity could lead to faster development of effective therapies. Results from this investigation could advance cartilage regeneration as a treatment for joint damage and diseases on Earth and contribute to development of ways to maintain cartilage health on future missions to the Moon and Mars.

Cargo Highlights

SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station

NASA's Northrop Grumman 20th commercial resupply mission will carry 7,805 pounds (3,540 kilograms) of cargo to the International Space Station.
NASA’s Northrop Grumman 20th commercial resupply mission will carry 7,805 pounds (3,540 kilograms) of cargo to the International Space Station.
NASA

Hardware  

  • Hydrogen Dome Assembly includes all  hydrogen and oxygen electrolysis replacement components within the International Space Station’s Oxygen Generation Assembly. These items are contained in a sub-ambient dome maintained at near vacuum pressure, designed to contain an explosion or fire in the electrolysis cell stack during operation. The dome provides a second barrier to protect against cabin air internal leakage and external leakage into the rack environment, and is pressurized with nitrogen gas for launch. This will launch as an  on-orbit spare.
  • Ion Exchange Bed — The ion exchange bed replacement unit consists of a pair of tubes in series containing ion exchange resins, which remove organic acids from the catalytic reactor effluent, and microbial check valve resin, which injects iodine into the water as a biocide agent. This will launch  as an on-orbit spare.
  • Catalytic Reactor — The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This will launch as an on-orbit spare.
  • Biocide Maintenance Canister — The Internal Thermal Control System Coolant Maintenance Assembly is designed to administer o-phthalaldehyde, a biocide used to purify the internal cooling loops in the Destiny laboratory, and the Harmony, Tranquility, Columbus, and Japanese Experiment Modules, to prevent the growth of microorganisms in the thermal control system. This unit will replace the current one installed in the laboratory.
  • Cylinder Flywheel — The ARED (Advanced Resistive Exercise Device) cylinder-flywheel assemblies provide the resistive loads for astronaut anaerobic exercise. The cylinder flywheels impart inertial forces to simulate Earth’s gravity during exercise.
  • International Space Station Roll Out Solar Array Modification Kit 7 – This upgrade kit consists of upper, mid, and lower struts (one each for left and right), a backbone, brackets, and support hardware for the new solar panels. This is the third in series of four modification kits needed to support the installation of the fourth set of upgraded solar arrays. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power.
  • Urine Processor Assembly Pressure Control and Pump Assembly — The assembly evacuates the urine distillation assembly at startup and periodically purges non-condensable gases and water vapor and pumps them to the separator plumbing assembly. The purge pump housing and pressure control and pump assembly manifolds are liquid cooled to promote steam condensation, thereby reducing the volume of the purge gas. All these systems make up the system used to covert urine to drinking water.
  • Collection Packet and Adapter — Required for minimal, nominal water microbial sampling. In-flight water quality assessment is needed to assure that water of acceptable, defined quality will be available aboard the space station.

Watch and Engage

Live coverage of the launch from Cape Canaveral Space Force Station in Cape Canaveral, Florida, will air on NASA TV, NASA+ and the agency’s website. Live coverage will begin at 12:15 p.m.

Live coverage of Cygnus’ rendezvous and capture at the space station will begin at 3:35 a.m. Jan. 31. Read more about how to watch and engage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s C-130, now under new ownership, sits ready for its final departure from NASA’s Wallops Flight Facility in Virginia, on Friday, April 18, 2025. NASA/Garon Clark NASA’s C-130 Hercules, fondly known as the Herc, went wheels up at 9:45 a.m., Friday, April 18, as it departed from its decade-long home at NASA’s Wallops Flight Facility in Virginia, for the final time. The aircraft is embarking on a new adventure to serve and protect in the state of California where it is now under the ownership of the California Department of Forestry and Fire Protection (CAL FIRE). 
      The transition of the C-130 to CAL FIRE is part of a long-running, NASA-wide aircraft enterprise-management activity to consolidate the aircraft fleet and achieve greater operational efficiencies while reducing the agency’s infrastructure footprint. 
      The C-130 Hercules takes off for the final time from NASA’s Wallops Flight Facility in Virginia.NASA/Garon Clark “Our C-130 and the team behind it has served with great distinction over the past decade,” said David L. Pierce, Wallops Flight Facility director. “While our time with this amazing airframe has come to a close, I’m happy to see it continue serving the nation in this new capacity with CAL FIRE.”  
      The research and cargo aircraft, built in 1986, was acquired by NASA in 2015. Over the past decade, the C-130 supported the agency’s airborne scientific research, provided logistics support and movement of agency cargo, and supported technology demonstration missions. The aircraft logged approximately 1,820 flight hours in support of missions across the world during its time with the agency. 
      Additional aircraft housed at NASA Wallops will be relocated to NASA’s Langley Research Center in Hampton, Virginia, in the coming months. 
      For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops. 
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Apr 18, 2025 EditorOlivia F. LittletonLocationWallops Flight Facility Related Terms
      Wallops Flight Facility Explore More
      4 min read NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
      UPDATE March 31, 2025: The third and final rocket of the AWESOME mission launched on Saturday,…
      Article 4 weeks ago 5 min read NASA Super Pressure Balloons Return to New Zealand for Test Flights
      Article 1 month ago 2 min read NASA Wallops Breaks Ground on New Causeway Bridge
      Article 4 days ago View the full article
    • By NASA
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with about 6,700 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      This launch is the 32nd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 12th SpaceX launch under the Commercial Resupply Services-2 (CRS) contract. The first 20 launches were under the original resupply services contract.
      NASA’s live launch coverage will begin at 3:55 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      NASA’s SpaceX 32nd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA’s SpaceX 32nd commercial resupply mission will launch from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Arrival & Departure
      The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the zenith port of the station’s Harmony module at approximately 8:20 a.m. Tuesday, April 22. Live coverage NASA’s coverage of the rendezvous and docking will begin at 6:45 a.m on NASA+. NASA astronaut Jonny Kim, Expedition 73 commander and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will monitor the arrival of the spacecraft, which will stay docked to the orbiting laboratory for about one month before splashing down and returning critical science and hardware to teams on Earth.
      Astronauts Jonny Kim of NASA and Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
      Robotic Spacecraft Guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites.NASA Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Protection From Particles
      The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success. NASA During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success.
      The investigation also tests a device for distinguishing between smoke and dust. Aboard the orbital outpost, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Next-Generation Pharmaceutical Nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. NASA The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Better Materials, Better Drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials.NASA The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Helping Plants Grow
      The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis.NASA The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use.
      The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Atomic Clocks in Space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity.NASA An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      Cargo Highlights
      NASA’s SpaceX 32nd commercial resupply mission will carry about 6,700 pounds of cargo to the International Space Station.NASA Hardware
      Launch:
      Catalytic Reactor – The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This unit failed in orbit and is being returned for analysis and refurbishment. This unit is being launched as an in-orbit spare.
        Food Reach Tool Assembly – An L-shaped, hand-held tool that allows crew members to reach packages in the back of the food warmer without having to insert their hands. This tool is launching to replace a unit in orbit. Reducer Cylinder Assembly – A cylinder tank that provides 15 minutes of oxygen to a crew member in case of an emergency. Launching two units as in-orbit spares. Thermal Expansion Device – A device used to allow for thermal expansion of water within the Hydrogen Dome while it is being removed and replaced. Launching to maintain minimum in-orbit spares. Return:
      Urine Processor Assembly Pressure Control and Pump Assembly – This multi-tube purge pump enables the removal of non-condensable gas and water vapor from the distillation assembly within the greater urine processing assembly subsystem. This unit is returning to the ground for repair and refurbishment in support of the legacy environmental control and life support system fleet. Assembly Contingency Transmitter Receiver Assembly – A part of the S-Band Radio Frequency Group, this assembly is a pressurized enclosure that contains electronics for this upper-level assembly. The Radio Frequency Group is used for command, control, and transmission communication for the space station. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during US EVA 92 and will return for repair. High Gain Antenna Feed Assembly – Part of the S-Band Radio Frequency Group, this system features a two-axis, gimballed assembly with a pedestal and a large horn antenna. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair. Low Gain Antenna Sub-Assembly – Part of the S-Band Radio Frequency Group, this sub-assembly consists of a helix antenna that provides a wide field of signal transmission capability. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair.  Planar Reflector Assembly – With an aluminum base and reflective element, visiting spacecraft reflect a laser to compute relative range, velocity, and attitude to the space station. This broken unit was retrieved and replaced by NASA astronaut Suni Williams during U.S. spacewalk 91 and will return for repair. Multifiltration Bed – Supporting the water processor assembly, this spare unit will continue the International Space Station program’s effort to replace a degraded fleet of units in-orbit that improve water quality through a single bed. This unit will return for refurbishment and re-flight. Watch and Engage
      Live coverage of the launch from NASA Kennedy will air at 3:55 a.m. on NASA+..
      For additional information on the mission, visit: https://www.nasa.gov/mission/nasas-spacex-crs-32/
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company’s 29th commercial resupply services mission for the agency to the International Space Station.SpaceX NASA invites the public to participate in virtual activities ahead of the launch of SpaceX’s 32nd commercial resupply services mission for the agency. NASA and SpaceX are targeting launch at 4:15 a.m. EDT Monday, April 21, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      In addition to food, supplies, and equipment for the crew, the SpaceX Dragon spacecraft will deliver several new experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts, such as relativity, and test worldwide synchronization of precision timepieces.
      The public can register to be virtual launch guests and receive curated mission resources, interactive opportunities, timely launch updates, and a mission-specific collectible stamp for their virtual guest passports delivered straight to their inbox after liftoff.
      A new way to collect and share passport stamps has arrived! Receive one for your virtual guest passport and another that is sized perfectly for sharing. Don’t have a passport yet? Print one here and start collecting!
      Learn more about NASA research and activities on the International Space Station at:
      https://www.nasa.gov/station.
      Share
      Details
      Last Updated Apr 16, 2025 EditorJason Costa Related Terms
      Kennedy Space Center Commercial Resupply Get Involved International Space Station (ISS) ISS Research SpaceX Commercial Resupply Virtual Guest Program Explore More
      4 min read Atomic Clock and Plant DNA Research Launching Aboard NASA’s SpaceX CRS-32 Mission 
      NASA’s SpaceX 32nd commercial resupply services mission, scheduled to lift off from the agency’s Kennedy…
      Article 1 day ago 1 min read Why Do We Grow Plants in Space?
      Article 1 day ago 4 min read GLOBE Mission Earth Supports Career Technical Education
      The NASA Science Activation program’s GLOBE Mission EARTH (GME) project is forging powerful connections between…
      Article 5 days ago Keep Exploring Discover Related Topics
      NASA’s SpaceX Crew-10
      The 11th flight of the Dragon spacecraft with people as part of NASA's Commercial Crew Program launched March 14, 2025,…
      International Space Station (ISS) (A)
      The Ocean and Climate Change
      Our ocean is changing. With 70 percent of the planet covered in water, the seas are important drivers of the…
      Our Solar System
      Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the…
      View the full article
    • By Space Force
      During the Space Foundation’s 40th Space Symposium, U.S. Space Force Lt. Gen. Douglas A. Schiess, U.S. Space Forces – Space commander and Combined Joint Force Space Component Commander, participated in a one-on-one discussion with U.S. Air Force Lt. Gen. (Ret.) David Buck.

      View the full article
    • By NASA
      NASA’s SpaceX 32nd commercial resupply services mission, scheduled to lift off from the agency’s Kennedy Space Center in April, is heading to the International Space Station with experiments that include research on whether plant DNA responses in space correlate to human aging and disease, and measuring the precise effects of gravity on time.  
      Discover more details about the two experiments’ potential impacts on space exploration and how they can enhance life on Earth: 
      “Second Guessing” Time in Space 
      As outlined in Einstein’s general theory of relativity, how we experience the passage of time is influenced by gravity. However, there is strong evidence to believe this theory may not be complete and that there are unknown forces at play. These new physics effects may manifest themselves in small deviations from Einstein’s prediction.  
      The ACES (Atomic Clock Ensemble in Space) investigation is an ESA (European Space Agency) mission that aims to help answer fundamental physics questions. By comparing a highly precise atomic clock in space with numerous ground atomic clocks around the world, ACES could take global time synchronization and clock comparison experiments to new heights.  
      Sponsored by NASA, United States scientists are participating in the mission in various ways, including contributing ground station reference clocks. Scheduled to collect data for 30 months, this vast network of precise clocks is expected to provide fresh insights into the exact relationship between gravity and time, set new limits for unknown forces, and improve global time synchronization.  
      In addition to investigating the laws of physics, ACES will enable new terrestrial applications such as relativistic geodesy, which involves measuring Earth’s shape and gravitational field with extreme precision. These advancements are critical to space navigation, satellite operations, and GPS systems. For example, without understanding the time fluctuations between Earth and medium Earth orbit, GPS would be progressively less accurate. 
      A robotic arm will attach ACES to the Columbus Laboratory module aboard the International Space Station. Image courtesy of ESA  Probing Plants for Properties to Protect DNA 
      The APEX-12 (Advanced Plant EXperiment-12) investigation will test the hypothesis that induction of telomerase activity in space protects plant DNA molecules from damage elicited by cellular stress evoked by the combined spaceflight stressors experienced by seedlings grown aboard the space station. It is expected that results will lead to a better understanding of differences between human and plant telomere behavior in space.   
      Data on telomerase activity in plants could be leveraged not only to develop therapies for age-related diseases in space and on Earth, but also for ensuring food crops are more resilient to spaceflight stress. 
      Telomeres and telomerase influence cell division and cell death, two processes crucial to understanding aging in humans. Telomeres are the protective end caps of chromosomes. Each time a cell divides, the telomeres shorten slightly, essentially acting as a biological clock for cell aging. Conversely, telomerase is an enzyme that adds nucleotide sequences to the ends of telomeres, lengthening them and counteracting their shortening.  
      In humans, telomere shortening is linked to various age-related conditions, such as cardiovascular diseases and certain cancers. In astronauts, studies have shown that spaceflight leads to changes in telomere length, with a notable lengthening observed. This phenomenon carries potential implications for astronaut health outcomes. By contrast, plant telomere length did not change during spaceflight, despite a dramatic increase in telomerase activity.
      A microscopic image of plant telomeres taken under a fluorescent microscope. The chromosomes are highlighted in blue. The telomeres are highlighted in yellow. Image courtesy of Texas A&M University  How this benefits space exploration: Experiments aboard NASA’s SpaceX CRS-32 mission is twofold. One, they have the potential to significantly enhance precision timekeeping, which is necessary to improve space navigation and communication. Two, they can provide insights into how plants adapt to protect DNA molecules from cellular stress caused by environmental factors experienced in spaceflight, in an effort to sustain plant life in space. 
      How this benefits humanity: The experiments conducted on NASA’s SpaceX CRS-32 mission offer a range of potential benefits to humanity. First, improving precision timekeeping for more accurate GPS technology. Second, capturing data about how telomerase activity correlates to cellular stress in plants, which could lead to assays which better correlate telomerase activity and cellular stress and provide fundamental research to contribute to potential therapies for humans.   
      Learn more about the investigations:
      ACES (Atomic Clock Ensemble in Space)

      Atomic Clock Ensemble in Space (ACES) is a European Space Agency (ESA) mission that aims to help answer fundamental physics questions.


      APEX-12 (Advanced Plant EXperiment-12)

      Advanced Plant EXperiment-12 (APEX-12) will test the hypothesis that induction of telomerase, a protein complex, activity in space protects plant DNA molecules from damage elicited by cellular stress evoked by the combined spaceflight stressors experienced by seedlings grown aboard the space station.


      About BPS 
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth. 
      View the full article
  • Check out these Videos

×
×
  • Create New...