Members Can Post Anonymously On This Site
Astronomers Use Innovative Technique to Find Extrasolar Planet
-
Similar Topics
-
By NASA
3 Min Read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
Cracked mud and salt on the valley floor in Death Valley National Park in California can become a reflective pool after rains. (File photo) Credits: NPS/Kurt Moses In a recently published paper, NASA scientists use nearly 20 years of observations to show that the global water cycle is shifting in unprecedented ways. The majority of those shifts are driven by activities such as agriculture and could have impacts on ecosystems and water management, especially in certain regions.
“We established with data assimilation that human intervention in the global water cycle is more significant than we thought,” said Sujay Kumar, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-author of the paper published in the Proceedings of the National Academy of Sciences.
The shifts have implications for people all over the world. Water management practices, such as designing infrastructure for floods or developing drought indicators for early warning systems, are often based on assumptions that the water cycle fluctuates only within a certain range, said Wanshu Nie, a research scientist at NASA Goddard and lead author of the paper.
“This may no longer hold true for some regions,” Nie said. “We hope that this research will serve as a guide map for improving how we assess water resources variability and plan for sustainable resource management, especially in areas where these changes are most significant.”
One example of the human impacts on the water cycle is in North China, which is experiencing an ongoing drought. But vegetation in many areas continues to thrive, partially because producers continue to irrigate their land by pumping more water from groundwater storage, Kumar said. Such interrelated human interventions often lead to complex effects on other water cycle variables, such as evapotranspiration and runoff.
Nie and her colleagues focused on three different kinds of shifts or changes in the cycle: first, a trend, such as a decrease in water in a groundwater reservoir; second, a shift in seasonality, like the typical growing season starting earlier in the year, or an earlier snowmelt; and third a change in extreme events, like “100-year floods” happening more frequently.
The scientists gathered remote sensing data from 2003 to 2020 from several different NASA satellite sources: the Global Precipitation Measurement mission satellite for precipitation data, a soil moisture dataset from the European Space Agency’s Climate Change Initiative, and the Gravity Recovery and Climate Experiment satellites for terrestrial water storage data. They also used products from the Moderate Resolution Imaging Spectroradiometer satellite instrument to provide information on vegetation health.
“This paper combines several years of our team’s effort in developing capabilities on satellite data analysis, allowing us to precisely simulate continental water fluxes and storages across the planet,” said Augusto Getirana, a research scientist at NASA Goddard and a co-author of the paper.
The study results suggest that Earth system models used to simulate the future global water cycle should evolve to integrate the ongoing effects of human activities. With more data and improved models, producers and water resource managers could understand and effectively plan for what the “new normal” of their local water situation looks like, Nie said.
By Erica McNamee
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
Share
Details
Last Updated Jan 16, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
Earth Global Precipitation Measurement (GPM) Goddard Space Flight Center Moderate Resolution Imaging Spectroradiometer (MODIS) Water & Energy Cycle Explore More
4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories
From peering into hurricanes to tracking El Niño-related floods and droughts to aiding in disaster…
Article 11 months ago 4 min read NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss
Article 7 months ago 4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…
Article 2 months ago View the full article
-
By NASA
International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities. The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.
Radio images of 1ES 1927+654 reveal emerging structures that appear to be jets of plasma erupting from both sides of the galaxy’s central black hole following a strong radio flare. The first image, taken in June 2023, shows no sign of the jet, possibly because hot gas screened it from view. Then, starting in February 2024, the features emerge and expand away from the galaxy’s center, covering a total distance of about half a light-year as measured from the center of each structure. NSF/AUI/NSF NRAO/Meyer at al. 2025 The source is 1ES 1927+654, a galaxy located about 270 million light-years away in the constellation Draco. It harbors a central black hole with a mass equivalent to about 1.4 million Suns.
“In 2018, the black hole began changing its properties right before our eyes, with a major optical, ultraviolet, and X-ray outburst,” said Eileen Meyer, an associate professor at UMBC (University of Maryland Baltimore County). “Many teams have been keeping a close eye on it ever since.”
She presented her team’s findings at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. A paper led by Meyer describing the radio results was published Jan. 13 in The Astrophysical Journal Letters.
After the outburst, the black hole appeared to return to a quiet state, with a lull in activity for nearly a year. But by April 2023, a team led by Sibasish Laha at UMBC and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had noted a steady, months-long increase in low-energy X-rays in measurements by NASA’s Neil Gehrels Swift Observatory and NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. This monitoring program, which also includes observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) and ESA’s (European Space Agency) XMM-Newton mission, continues.
The increase in X-rays triggered the UMBC team to make new radio observations, which indicated a strong and highly unusual radio flare was underway. The scientists then began intensive observations using the NRAO’s (National Radio Astronomy Observatory) VLBA (Very Long Baseline Array) and other facilities. The VLBA, a network of radio telescopes spread across the U.S., combines signals from individual dishes to create what amounts to a powerful, high-resolution radio camera. This allows the VLBA to detect features less than a light-year across at 1ES 1927+654’s distance.
Active galaxy 1ES 1927+654, circled, has exhibited extraordinary changes since 2018, when a major outburst occurred in visible, ultraviolet, and X-ray light. The galaxy harbors a central black hole weighing about 1.4 million solar masses and is located 270 million light-years away. Pan-STARRS Radio data from February, April, and May 2024 reveals what appear to be jets of ionized gas, or plasma, extending from either side of the black hole, with a total size of about half a light-year. Astronomers have long puzzled over why only a fraction of monster black holes produce powerful plasma jets, and these observations may provide critical clues.
“The launch of a black hole jet has never been observed before in real time,” Meyer noted. “We think the outflow began earlier, when the X-rays increased prior to the radio flare, and the jet was screened from our view by hot gas until it broke out early last year.”
A paper exploring that possibility, led by Laha, is under review at The Astrophysical Journal. Both Meyer and Megan Masterson, a doctoral candidate at the Massachusetts Institute of Technology in Cambridge who also presented at the meeting, are co-authors.
Using XMM-Newton observations, Masterson found that the black hole exhibited extremely rapid X-ray variations between July 2022 and March 2024. During this period, the X-ray brightness repeatedly rose and fell by 10% every few minutes. Such changes, called millihertz quasiperiodic oscillations, are difficult to detect around supermassive black holes and have been observed in only a handful of systems to date.
“One way to produce these oscillations is with an object orbiting within the black hole’s accretion disk. In this scenario, each rise and fall of the X-rays represents one orbital cycle,” Masterson said.
If the fluctuations were caused by an orbiting mass, then the period would shorten as the object fell ever closer to the black hole’s event horizon, the point of no return. Orbiting masses generate ripples in space-time called gravitational waves. These waves drain away orbital energy, bringing the object closer to the black hole, increasing its speed, and shortening its orbital period.
Over two years, the fluctuation period dropped from 18 minutes to just 7 — the first-ever measurement of its kind around a supermassive black hole. If this represented an orbiting object, it was now moving at half the speed of light. Then something unexpected happened — the fluctuation period stabilized.
In this artist’s concept, matter is stripped from a white dwarf (sphere at lower right) orbiting within the innermost accretion disk surrounding 1ES 1927+654’s supermassive black hole. Astronomers developed this scenario to explain the evolution of rapid X-ray oscillations detected by ESA’s (European Space Agency) XMM-Newton satellite. ESA’s LISA (Laser Interferometer Space Antenna) mission, due to launch in the next decade, should be able to confirm the presence of an orbiting white dwarf by detecting the gravitational waves it produces. NASA/Aurore Simonnet, Sonoma State University “We were shocked by this at first,” Masterson explained. “But we realized that as the object moved closer to the black hole, its strong gravitational pull could begin to strip matter from the companion. This mass loss could offset the energy removed by gravitational waves, halting the companion’s inward motion.”
So what could this companion be? A small black hole would plunge straight in, and a normal star would quickly be torn apart by the tidal forces near the monster black hole. But the team found that a low-mass white dwarf — a stellar remnant about as large as Earth — could remain intact close to the black hole’s event horizon while shedding some of its matter. A paper led by Masterson summarizing these results will appear in the Feb. 13 edition of the journal Nature.
This model makes a key prediction, Masterson notes. If the black hole does have a white dwarf companion, the gravitational waves it produces will be detectable by LISA (Laser Interferometer Space Antenna), an ESA mission in partnership with NASA that is expected to launch in the next decade.
Download high-resolution images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contacts:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Jill Malusky
304-456-2236
jmalusky@nrao.edu
National Radio Astronomy Observatory, Charlottesville, Va.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 13, 2025 Related Terms
Active Galaxies Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Jet Propulsion Laboratory Neil Gehrels Swift Observatory NICER (Neutron star Interior Composition Explorer) NuSTAR (Nuclear Spectroscopic Telescope Array) Radio Astronomy Supermassive Black Holes The Universe White Dwarfs X-ray Astronomy XMM-Newton (X-ray Multi-Mirror Newton) View the full article
-
By NASA
A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions.Credit: NASA/Left to Right: Saurabh Vilekar, Marco Quadrelli, Selim Shahriar, Gyula Greschik, Martin Bermudez, Ryan Weed, Ben Hockman, Robert Hinshaw, Christine Gregg, Ryan Benson, Michael Hecht NASA selected 15 visionary ideas for its NIAC (NASA Innovative Advanced Concepts) program which develops concepts to transform future missions for the benefit of all. Chosen from companies and institutions across the United States, the 2025 Phase I awardees represent a wide range of aerospace concepts.
The NIAC program nurtures innovation by funding early-stage technology concept studies for future consideration and potential commercialization. The combined award for the 2025 concepts is a maximum of $2.625M in grants to evaluate technologies that could enable future aerospace missions.
“Our next steps and giant leaps rely on innovation, and the concepts born from NIAC can radically change how we explore deep space, work in low Earth orbit, and protect our home planet” said Clayton Turner, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “From developing small robots that could swim through the oceans of other worlds to growing space habitats from fungi, this program continues to change the possible.”
The newly selected concepts include feasibility studies to explore the Sun’s influence on our solar system, build sustainable lunar habitats from glass, explore Saturn’s icy moon, and more. All NIAC studies are in the early stages of conceptual development and are not considered official NASA missions.
Ryan Weed, Helicity Space LLC in Pasadena, California, proposes a constellation of spacecraft powered by the Helicity Drive, a compact and scalable fusion propulsion system, that could enable rapid, multi-directional exploration of the heliosphere and beyond, providing unprecedented insights on how the Sun interacts with our solar system and interstellar space. Demonstrating the feasibility of fusion propulsion could also benefit deep space exploration including crewed missions to Mars.
Martin Bermudez, Skyeports LLC in Sacramento, California, presents the concept of constructing a large-scale, lunar glass habitat in a low-gravity environment. Nicknamed LUNGS (Lunar Glass Structure), this approach involves melting lunar glass compounds to create a large spherical shell structure. This idea offers a promising solution for establishing self-sustaining, large-scale habitats on the lunar surface.
Justin Yim, University of Illinois in Urbana, proposes a jumping robot appropriately named LEAP (Legged Exploration Across the Plume), as a novel robotic sampling concept to explore Enceladus, a small, icy moon of Saturn that’s covered in geysers, or jets. The LEAP robots could enable collection of pristine, ocean-derived material directly from Enceladus’s jets and measurement of particle properties across multiple jets by traveling from one to another.
“All advancements begin as an idea. The NIAC program allows NASA to invest in unique ideas enabling innovation and supporting the nation’s aerospace economy,” said John Nelson, program executive for NASA’s Innovative Advanced Concepts in Washington.
The NIAC researchers, known as fellows, will investigate the fundamental premise of their concepts, identify potential challenges, and look for opportunities to bring these concepts to life.
In addition to the projects mentioned above, the following selectees received 2025 NIAC Phase I grants:
Michael Hecht, Massachusetts Institute of Technology, Cambridge: EVE (Exploring Venus with Electrolysis) Selim Shahriar, Northwestern University, Evanston, Illinois: SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity Phillip Ansell, University of Illinois, Urbana: Hy2PASS (Hydrogen Hybrid Power for Aviation Sustainable Systems) Ryan Benson, ThinkOrbital Inc., Boulder, Colorado: Construction Assembly Destination Gyula Greschik, Tentguild Engineering Co, Boulder, Colorado: The Ribbon: Structure Free Sail for Solar Polar Observation Marco Quadrelli, NASA’s Jet Propulsion Laboratory in California’s Silicon Valley: PULSAR: Planetary pULSe-tAkeRv Ben Hockman, NASA’s Jet Propulsion Laboratory in California’s Silicon Valley: TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling Kimberly Weaver, NASA’s Goddard Space Flight Center in Greenbelt, Maryland: Beholding Black Hole Power with the Accretion Explorer Interferometer John Mather NASA’s Goddard Space Flight Center in Greenbelt, Maryland: Inflatable Starshade for Earthlike Exoplanets Robert Hinshaw, NASA’s Ames Research Center in Moffett Field, California: MitoMars: Targeted Mitochondria Replacement Therapy to Boost Deep Space Endurance Christine Gregg, NASA’s Ames Research Center in Moffett Field, California: Dynamically Stable Large Space Structures via Architected Metamaterials Saurabh Vilekar, Precision Combustion, North Haven, Connecticut: Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply NASA’s Space Technology Mission Directorate funds the NIAC program, as it is responsible for developing the agency’s new cross-cutting technologies and capabilities to achieve its current and future missions.
To learn more about NIAC, visit:
https://www.nasa.gov/niac
-end-
Jasmine Hopkins
Headquarters, Washington
321-431-4624
jasmine.s.hopkins@nasa.gov
Share
Details
Last Updated Jan 10, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
NASA Innovative Advanced Concepts (NIAC) Program Space Technology Mission Directorate View the full article
-
By NASA
NASA’s 2024 AI Use Case inventory highlights the agency’s commitment to integrating artificial intelligence in its space missions and operations. The agency’s updated inventory consists of active AI use cases, ranging from AI-driven autonomous space operations, such as navigation for the Perseverance Rover on Mars, to advanced data analysis for scientific discovery.
AI Across NASA
NASA’s use of AI is diverse and spans several key areas of its missions:
Autonomous Exploration and Navigation
AEGIS (Autonomous Exploration for Gathering Increased Science): AI-powered system designed to autonomously collect scientific data during planetary exploration. Enhanced AutoNav for Perseverance Rover: Utilizes advanced autonomous navigation for Mars exploration, enabling real-time decision-making. MLNav (Machine Learning Navigation): AI-driven navigation tools to enhance movement across challenging terrains. Perseverance Rover on Mars – Terrain Relative Navigation: AI technology supporting the rover’s navigation across Mars, improving accuracy in unfamiliar terrain. Mission Planning and Management
ASPEN Mission Planner: AI-assisted tool that helps streamline space mission planning and scheduling, optimizing mission efficiency. AWARE (Autonomous Waiting Room Evaluation): AI system that manages operational delays, improving mission scheduling and resource allocation. CLASP (Coverage Planning & Scheduling): AI tools for resource allocation and scheduling, ensuring mission activities are executed seamlessly. Onboard Planner for Mars2020 Rover: AI system that helps the Perseverance Rover autonomously plan and schedule its tasks during its mission. Environmental Monitoring and Analysis
SensorWeb for Environmental Monitoring: AI-powered system used to monitor environmental factors such as volcanoes, floods, and wildfires on Earth and beyond. Volcano SensorWeb: Similar to SensorWeb, but specifically focused on volcanic activity, leveraging AI to enhance monitoring efforts. Global, Seasonal Mars Frost Maps: AI-generated maps to study seasonal variations in Mars’ atmosphere and surface conditions. Data Management and Automation
NASA OCIO STI Concept Tagging Service: AI tools that organize and tag NASA’s scientific data, making it easier to access and analyze. Purchase Card Management System (PCMS): AI-assisted system for streamlining NASA’s procurement processes and improving financial operations. Aerospace and Air Traffic Control
NextGen Methods for Air Traffic Control: AI tools to optimize air traffic control systems, enhancing efficiency and reducing operational costs. NextGen Data Analytics: Letters of Agreement: AI-driven analysis of agreements within air traffic control systems, improving management and operational decision-making. Space Exploration
Mars2020 Rover (Perseverance): AI systems embedded within the Perseverance Rover to support its mission to explore Mars. SPOC (Soil Property and Object Classification): AI-based classification system used to analyze soil and environmental features, particularly for Mars exploration. Ethical AI: NASA’s Responsible Approach
NASA ensures that all AI applications adhere to Responsible AI (RAI) principles outlined by the White House in its Executive Order 13960. This includes ensuring AI systems are transparent, accountable, and ethical. The agency integrates these principles into every phase of development and deployment, ensuring AI technologies used in space exploration are both safe and effective.
Looking Forward: AI’s Expanding Role
As AI technologies evolve, NASA’s portfolio of AI use cases will continue to grow. With cutting-edge tools currently in development, the agency is poised to further integrate AI into more aspects of space exploration, from deep space missions to sustainable solutions for planetary exploration.
By maintaining a strong commitment to both technological innovation and ethical responsibility, NASA is not only advancing space exploration but also setting an industry standard for the responsible use of artificial intelligence in scientific and space-related endeavors.
View the AI Inventory View the full article
-
By NASA
3 min read
January’s Night Sky Notes: The Red Planet
by Kat Troche of the Astronomical Society of the Pacific
Have you looked up at the night sky this season and noticed a bright object sporting a reddish hue to the left of Orion? This is none other than the planet Mars! January will be an excellent opportunity to spot this planet and some of its details with a medium-sized telescope. Be sure to catch these three events this month.
Martian Retrograde
Mars entered retrograde (or backward movement relative to its usual direction) on December 7, 2024, and will continue throughout January into February 23, 2025. You can track the planet’s progress by sketching or photographing Mars’ position relative to nearby stars. Be consistent with your observations, taking them every few nights or so as the weather permits. You can use free software like Stellarium or Stellarium Web (the browser version) to help you navigate the night as Mars treks around the sky. You can find Mars above the eastern horizon after 8:00 PM local time.
This mid-January chart shows the path of Mars from September 2024 to June 2025 as it enters and then exits in retrograde motion. Mars appears to change its direction of motion in the sky because Earth is passing the slower-moving Mars in its orbit. Stellarium Hide and Seek
On the night of January 13th, you can watch Mars ‘disappear’ behind the Moon during an occultation. An occultation is when one celestial object passes directly in front of another, hiding the background object from view. This can happen with planets and stars in our night sky, depending on the orbit of an object and where you are on Earth, similar to eclipses.
A simulated view of the Moon as Mars begins its occultation on January 13, 2025. Stellarium Depending on where you are within the contiguous United States, you can watch this event with the naked eye, binoculars, or a small telescope. The occultation will happen for over an hour in some parts of the US. You can use websites like Stellarium Web or the Astronomical League’s ‘Moon Occults Mars’ chart to calculate the best time to see this event.
Closer and Closer
As you observe Mars this month to track its retrograde movement, you will notice that it will increase in brightness. This is because Mars will reach opposition by the evening of January 16th. Opposition happens when a planet is directly opposite the Sun, as seen from Earth. You don’t need to be in any specific city to observe this event; you only need clear skies to observe that it gets brighter. It’s also when Mars is closest to Earth, so you’ll see more details in a telescope.
Want a quick and easy way to illustrate what opposition is for Jupiter, Saturn, Mars, or other outer worlds? Follow the instructions on our Toolkit Hack: Illustrating Opposition with Exploring the Solar System page using our Exploring Our Solar System activity!
A mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The mosaic is composed of 102 Viking Orbiter images of Mars. NASA/JPL-Caltech Mars has fascinated humanity for centuries, with its earliest recorded observations dating back to the Bronze Age. By the 17th century, astronomers were able to identify features of the Martian surface, such as its ice caps and darker regions. Since the 1960s, exploration of the Red Planet has intensified with robotic missions from various space organizations. Currently, NASA has five active missions, including rovers and orbiters, with the future focused on human exploration and habitation. Mars will always fill us with a sense of wonder and adventure as we reach for its soil through initiatives such as the Moon to Mars Architecture and the Mars Sample Return campaign.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.