Jump to content

Recommended Posts

Posted
World_s_largest_iceberg_drifts_beyond_An Video: 00:00:20

In November 2023, the A23a mega iceberg set sail after being grounded on the ocean floor for well over 40 years. Now, driven by winds and currents, A23a is heading away from Antarctic waters as seen in this new animation.

The iceberg calved from West Antarctica in 1986 but quickly grounded itself in the Weddell Sea where it remained for over four decades. At around 4000 sq km in area, more than four times the size of New York City, and just over 280 m thick, the berg currently holds the title for world’s largest iceberg.

The animation uses sea-ice concentration data and shows the iceberg’s movements between 1 November 2023 to 23 January 2024. Similar to many icebergs originating from the Weddell sector, A23a is likely to be expelled into the Antarctic Circumpolar Current – propelling it towards the South Atlantic along a trajectory commonly referred to as ‘iceberg alley’.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Michala Garrison, USGS The OLI (Operational Land Imager) on Landsat 8 captured an image of Kachemak Bay’s turbid, cloudy waters on September 20, 2024. This cloudiness comes from glacial flour: bits of pulverized rock ground down by glaciers that has the consistency of flour. Several meltwater streams rich with the particles, sometimes called suspended sediment, absorb and scatter sunlight in ways that turn water a milky blue-green hue. The water that flows into the bay from the Grewingk-Yalik Glacier Complex to the east carries sediment-infused waters that transform the appearance of the bay during the summer, raising questions about how much the influx of sediment affects the bay’s marine life.
      Learn more about efforts to study Kachemak Bay’s sediment plumes.
      Text credit: Adam Voiland
      Image credit: NASA/Michala Garrison, USGS
      View the full article
    • By NASA
      Teams with NASA are gaining momentum as work progresses toward future lunar missions for the benefit of humanity as numerous flight hardware shipments from across the world arrived at the agency’s Kennedy Space Center in Florida for the first crewed Artemis flight test and follow-on lunar missions. The skyline at Kennedy will soon see added structures as teams build up the ground systems needed to support them.
      Crews are well underway with parallel preparations for the Artemis II flight, as well as buildup of NASA’s mobile launcher 2 tower for use during the launch of the SLS (Space Launch System) Block 1B rocket, beginning with the Artemis IV mission. This version of NASA’s rocket will use a more powerful upper stage to launch with crew and more cargo on lunar missions. Technicians have begun upper stage umbilical connections testing that will help supply fuel and other commodities to the rocket while at the launch pad.
      In summer 2024, technicians from NASA and contractor Bechtel National, Inc. completed a milestone called jack and set, where the center’s mega-mover, the crawler transporter, repositioned the initial steel base assembly for mobile launcher 2 from temporary construction shoring to its six permanent pedestals near the Kennedy’s Vehicle Assembly Building.   
      Teams at Bechtel National, Inc. use a crane to lift Module 4 into place atop the mobile launcher 2 tower chair at its park site on Jan. 3, 2025, at Kennedy Space Center in Florida. Module 4 is the first of seven modules that will be stacked vertically to make up the almost 400-foot launch tower that will be used beginning with the Artemis IV mission.Betchel National Inc./Allison Sijgers “The NASA Bechtel mobile launcher 2 team is ahead of schedule and gaining momentum by the day,” stated Darrell Foster, ground systems integration manager, NASA’s Exploration Ground Systems Program at NASA Kennedy. “In parallel to all of the progress at our main build site, the remaining tower modules are assembled and outfitted at a second construction site on center.”
      As construction of the mobile launcher 2’s base continues, the assembly operations shift into integration of the modules that will make up the tower. In mid-October 2024, crews completed installation of the chair, named for its resemblance to a giant seat. The chair serves as the interface between the base deck and the vertical modules which are the components that will make up the tower, and stands at 80-feet-tall.
      In December 2024, teams completed the rig and set Module 4 operation where the first of a total of seven 40-foot-tall modules was stacked on top of the chair. Becthel crews rigged the module to a heavy lift crane, raised the module more than 150-feet, and secured the four corners to the tower chair. Once complete, the entire mobile launcher structure will reach a height of nearly 400 feet – approximately the length of four Olympic-sized swimming pools placed end-to-end.
      On the opposite side of the center, test teams at the Launch Equipment Test Facility are testing the new umbilical interfaces, which will be located on mobile launcher 2, that will be needed to support the new SLS Block 1B Exploration Upper Stage. The umbilicals are connecting lines that provide fuel, oxidizer, pneumatic pressure, instrumentation, and electrical connections from the mobile launcher to the upper stage and other elements of SLS and NASA’s Orion spacecraft.
      “All ambient temperature testing has been successfully completed and the team is now beginning cryogenic testing, where liquid nitrogen and liquid hydrogen will flow through the umbilicals to verify acceptable performance,” stated Kevin Jumper, lab manager, NASA Launch Equipment Test Facility at Kennedy. “The Exploration Upper Stage umbilical team has made significant progress on check-out and verification testing of the mobile launcher 2 umbilicals.”
      https://www.nasa.gov/wp-content/uploads/2025/01/eusu-test-3-5b-run-1.mp4 Exploration Upper Stage Umbilical retract testing is underway at the Launch Equipment Test Facility at Kennedy Space Center in Florida on Oct. 22, 2024. The new umbilical interface will be used beginning with the Artemis IV mission. Credit: LASSO Contract LETF Video Group The testing includes extension and retraction of the Exploration Upper Stage umbilical arms that will be installed on mobile launcher 2. The test team remotely triggers the umbilical arms to retract, ensuring the ground and flight umbilical plates separate as expected, simulating the operation that will be performed at lift off.
      View the full article
    • By NASA
      NASA 2025: To the Moon, Mars, and Beyond
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Knowing whether or not a planet elsewhere in the galaxy could potentially be habitable requires knowing a lot about that planet’s sun. Sarah Peacock relies on computer models to assess stars’ radiation, which can have a major influence on whether or not one of these exoplanets has breathable atmosphere.
      Name: Sarah Peacock
      Title: Assistant Research Scientist
      Formal Job Classification: Astrophysicist
      Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)
      Sarah Peacock is a research scientist with the Exoplanets and Stellar Astrophysics Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md.Courtesy of Sarah Peacock What do you do and what is most interesting about your role here at Goddard?
      My overarching research goal is to find habitable planets in other solar systems. To do this, I study the high-energy radiation that specific stars produce to help determine if life can exist on any earthlike planets that orbit them.
      What is your educational background?
      In 2013, I received a Bachelor of Arts in astrophysics from the University of Virginia. I received both my master’s and doctorate degrees from the Lunar and Planetary Laboratory at the University of Arizona in 2016 and 2019, respectively.
      What drew you to study the stars?
      In high school, I took an astronomy class. We had a planetarium in our school and I had a wonderful teacher who inspired me to fall in love with the stars. She also showed us how many of the Harry Potter characters are drawn from the constellations and that spoke to my heart because I am a Harry Potter fan!
      How did you come to Goddard?
      I started at Goddard as a NASA post-doctoral fellow in July 2020, but I first saw the center the day before Goddard shut down due to COVID.
      How does high-energy radiation show you what planets outside our solar system might be habitable?
      High-energy radiation can cause a planet to lose its atmosphere. If a planet is exposed to too much high-energy radiation, the atmosphere can be blown off, and if there is no atmosphere, then there is nothing for life as we know it to breathe.
      We cannot directly measure the specific radiation that I study, so we have to model it. The universe has so many stars, and almost all stars host a planet. There are approximately 5,500 confirmed exoplanets so far, with an additional 7,500 unconfirmed exoplanets.
      I help identify systems that either have too much radiation, so planets in the habitable zone (the region around a star where liquid water could exist on a planet’s surface) are probably lifeless, or systems that have radiation levels that are safer. Ultimately, my research helps narrow down the most likely systems to host planets that should have stable atmospheres.
      Sarah Peacock research goal is to find habitable planets in other solar systems.Courtesy of Sarah Peacock Where does your data come from?
      I predominately use data from the Hubble Space Telescope and from the now-retired spacecraft GALEX. My work itself is more theory-focused though: I create a modeled stellar spectrum across all wavelengths and use observations to validate my modeling.
      What other areas of research are you involved in?
      I am working with a team analyzing data from the James Webb Space Telescope to see if earthlike planets around M-type stars (a star that is cooler and smaller than the Sun) have atmospheres and, if so, what the composition of those atmospheres is. An exciting result from this work is that we may have detected water in the atmosphere of a rocky planet for the first time ever. However, we cannot yet distinguish with our current observations if that water comes from the planet or from spots on the star (starspots on this host star are cold enough for water to exist in gas form).
      I am also helping manage a NASA Innovative Advance Concept (NIAC) study led by my mentor, Ken Carpenter, to work on the Artemis Enabled Stellar Imager (AeSI). If selected for further development, this imager would be an ultraviolet/optical interferometer located on the South Pole of the Moon. With this telescope, we would be able to map the surface of stars, image accretion disks, and image the centers of Active Galactic Nuclei.
      As a relatively new employee to Goddard, what have been your first impressions?
      Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming. Starting during the pandemic, I was worried about feeling isolated, but instead, I was blown away by how many folks in my lab reached out to set up calls to introduce themselves and suggest opportunities for collaboration. It made me feel welcome.
      Who is your mentor and what did your mentor advise you?
      Ken Carpenter is my mentor. He encourages me to pursue my aspirations. He supports letting me chart my own path and being exposed to many different areas of research. I thank Ken for his support and encouragement and for including me on his projects.
      “Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming.”Courtesy of Sarah Peacock What do you do for fun?
      I am a new mom, so my usual hobbies are on pause! Right now, fun is taking care of my baby and introducing life experiences to him.
      As a recently selected member of the Executive Committee for NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG), what are your responsibilities?
      The NASA ExoPAG is responsible for soliciting and coordinating scientific community input into the development and execution of NASA’s exoplanet exploration program. We solicit opinions and advice from any scientist who studies exoplanets. We are a bridge between NASA’s exoplanet scientists and NASA Headquarters in Washington.
      What is a fun fact about yourself?
      I got married the same day I defended my Ph.D. I had my defense in the morning and got married in the afternoon at the courthouse.
      Who is your favorite author?
      I love to read; I always have three books going. My favorite author is Louise Penny, who writes mysteries, but I read all genres. Right now, I am reading a biography about Marjorie Merriweather Post.
      What is your favorite quote?
      “The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful.” —Box and Draper 1987
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Dec 10, 2024 Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 2 hours ago 5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across North America, from the western…
      Article 6 hours ago 17 min read 30 Years Ago: NASA Selects its 15th Group of Astronauts 
      Article 22 hours ago View the full article
    • By NASA
      NASA, along with members of the FAA and commercial drone engineers, gathered in the Dallas area May 25, 2024, to view multiple delivery drones operating in a shared airspace beyond visual line of sight using an industry-developed, NASA-originated uncrewed aircraft system traffic management system.NASA NASA’s Uncrewed Aircraft Systems Traffic Management Beyond Visual Line of Sight (UTM BVLOS) subproject aims to support the growing demand for drone flights across the globe.  
      Uncrewed aircraft systems (UAS), or drones, offer an increasing number of services, from package delivery to critical public safety operations, like search and rescue missions. However, without special waivers, these flights are currently limited to visual line of sight – or only as far as the pilot can see – which is roughly no farther than one mile from the operator. As the FAA works to authorize flights beyond this point, NASA is working with industry and the Federal Aviation Administration (FAA) to operationalize an uncrewed traffic management system for these operations.  
      NASA’s UTM Legacy  
      NASA’s Uncrewed Aircraft Systems Traffic Management, or UTM, was first developed at NASA’s Ames Research Center in California’s Silicon Valley in 2013, and enables drones to safely and efficiently integrate into air traffic that is already flying in low-altitude airspace. UTM is based on digital sharing of each user’s planned flight details, ensuring each user has the same situational awareness of the airspace. 
      NASA performed a series of drone flight demonstrations using UTM concepts in rural areas and densely populated cities under the agency’s previous UTM project . And commercial drone companies have since utilized NASA’s UTM concepts and delivery operations in limited areas.  
      Several projects supporting NASA’s Advanced Air Mobility or AAM mission are working on different elements to help make AAM a reality and one of these research areas is automation.NASA / Graphics UTM Today 
      NASA research is a driving force in making routine drone deliveries a reality. The agency is supporting a series of commercial drone package deliveries beyond visual line of sight, some of which kicked off in August 2024 in Dallas, Texas. Commercial operators are using NASA’s UTM-based capabilities during these flights to share data and planned flight routes with other operators in the airspace, detect and avoid hazards, and maintain situational awareness. All of these capabilities allow operators to safely execute their operations in a shared airspace below 400 feet and away from crewed aircraft. These drone operations in Dallas are a collaboration between NASA, the FAA, industry drone operators, public safety operators, and others. 
      These initial flights will help validate UTM capabilities through successful flight operation evaluations and inform the FAA’s rulemaking for safely expanding drone operations beyond visual line of sight. 
      The agency will continue to work with industry and government partners on more complex drone operations in communities across the country. NASA is also working with partners to leverage UTM for other emerging operations, including remotely piloted air cargo delivery and air taxi flights. UTM infrastructure could also support high-altitude operations for expanded scientific research, improved disaster response, and more. 
      NASA UTM BVLOS 
      NASA’s UTM Beyond Visual Line of Site (UTM BVLOS) subproject is leading this effort, under the Air Traffic Management eXploration portfolio within the agency’s Aeronautics Research Mission Directorate. This work is in support of NASA’s Advanced Air Mobility Mission, which seeks to transform our communities by bringing the movement of people and goods off the ground, on demand, and into the sky.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...