Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4389-4390: A Wealth of Ripples, Nodules and Veins
      NASA’s Mars rover Curiosity captured this image showing the patches and aggregations of darker-toned material in its workspace on Dec. 8, 2024. Curiosity acquired this image using its Mast Camera (Mastcam) on sol 4387 — Martian day 4,387 of the Mars Science Laboratory mission — at 17:44:17 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Dec. 9, 2024
      We are continuing to edge our way around the large “Texoli” butte. Much of the bedrock we have been traversing recently looks pretty similar — paler-colored laminated bedrock — but today’s workspace had some interesting features, as did the “drive direction” image, which focuses on the future drive path.
      Close to the rover, we had a wealth of fractures and darker-toned patches. The fractures or veins were too far from the rover for contact science, but ChemCam LIBS was able to target one of the more prominent ones at “Garlock Fault.” Luckily for the contact science instruments (APXS and MAHLI), the darker patches were within reach of the arm. Some of the darker patches were flatter and platy in appearance, whilst others had a more amorphous, blobby shape. Both types come with their own challenges. The flatter ones collect dust on their flat surfaces, so ideally they would be brushed with the DRT (Dust Removal Tool) before we analyze them, but they are often too fragile-looking, and we worry that some of the layers might break off or flake off. The amorphous ones have irregular surfaces, which can collect sand and dust and make getting a good placement tricky.
      However, today we were able to get both APXS and MAHLI on the flattest, most dust-free looking patch at “Cerro Negro.” We will be able to compare the composition of the darker patches and the Garlock Fault vein, and hopefully tease out their relationship.
      Mastcam will take a small mosaic of Garlock Fault and then a larger mosaic on crosscutting veins at “Wildwood Canyon.” This was previously imaged, but from a different angle, so getting a second image will allow us to calculate the orientations on the fractures. Further afield, the “Forest Falls” mosaic looks at an area of dark, raised vein material.
      Looking at the drive direction image, the sedimentologists were very excited to see what appear to be ripple features in the rocks ahead of us, which can tell us a lot about the depositional environment. The Mastcam mosaic “Hahamongna” will image the outcrop we are driving towards (about 30 meters from today’s workspace, or 98 feet), to give context for what we see when we get there. Mastcam will take a second smaller mosaic at “Malibu Creek” midway between where we are today and where we hope to be on Wednesday.
      Looking even further into our future driving path, we will obtain Mastcam and ChemCam RMI images of the top of Mount Sharp and the yardang unit. We have a bit to go before we get there of course, but we will use those images to examine structural relationships and consider the evolution of both — we can test all those theories when we get there!
      We round out the plan with environmental monitoring, as always …and wait eagerly for the next workspace on Wednesday, when we will get up close to those ripples, with luck!
      Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Share








      Details
      Last Updated Dec 11, 2024 Related Terms
      Blogs Explore More
      2 min read Looking Out for ‘Lookout Hill’


      Article


      1 day ago
      3 min read Sols 4386-4388: Powers of Ten


      Article


      2 days ago
      3 min read Sols 4384-4385: Leaving the Bishop Quad


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA/Eric Bordelon Comet C/2023 A3 (Tsuchinshan-ATLAS) passes over NASA’s Michoud Assembly Facility in New Orleans in this Oct. 13, 2024, image. This comet comes from the Oort Cloud, far beyond Pluto and the most distant edges of the Kuiper Belt. Though Comet C/2023 A3 will be visible through early November, the best time to observe is between now and Oct. 24.
      Image credit: NASA/Eric Bordelon
      View the full article
    • By NASA
      On Sept. 9 and 10, scientists and engineers tested NASA’s LEMS (Lunar Environment Monitoring Station) instrument suite in a “sandbox” of simulated Moon regolith at the Florida Space Institute’s Exolith Lab at the University of Central Florida in Orlando.





      Lunar regolith is a dusty, soil-like material that coats the Moon’s surface, and researchers wanted to observe how the material would interact with LEMS’s hardware, which is being developed to fly to the Moon with Artemis III astronauts in late 2026.
      Designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, LEMS is one of three science payloads chosen for development for Artemis III, which will be the first mission to land astronauts on the lunar surface since 1972.
      The LEMS instrument package can operate both day and night. It will carry two University of Arizona-built seismometers to the surface to perform long-term monitoring for moonquakes and meteorite impacts.
      Image credits: NASA/UCF/University of Arizona

      Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert


      NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July.
       NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.
      NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.
      One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.
      The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.
      “We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”
      Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.
      “It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”
      This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.
      The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.
      The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.
      More About PREFIRE
      The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.
      To learn more about PREFIRE, visit:
      https://science.nasa.gov/mission/prefire/
      5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-116
      Share
      Details
      Last Updated Sep 03, 2024 Related Terms
      PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Polar Explore More
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
      Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy
      Since the 1960s, astronomers have wondered how the Sun’s supersonic “solar wind,” a stream of energetic particles that flows out into the solar system, continues to receive energy once it leaves the Sun. Now, thanks to a lucky lineup of a NASA and an ESA (European Space Agency)/NASA spacecraft both currently studying the Sun, they may have discovered the answer — knowledge that is a crucial piece of the puzzle to help scientists better forecast solar activity between the Sun and Earth.
      A paper published in the Aug. 30, 2024, issue of the journal Science provides persuasive evidence that the fastest solar winds are powered by magnetic “switchbacks,” or large kinks in the magnetic field, near the Sun.
      “Our study addresses a huge open question about how the solar wind is energized and helps us understand how the Sun affects its environment and, ultimately, the Earth,” said Yeimy Rivera, co-leader of the study and a postdoctoral fellow at the Smithsonian Astrophysical Observatory, part of Center for Astrophysics | Harvard & Smithsonian. “If this process happens in our local star, it’s highly likely that this powers winds from other stars across the Milky Way galaxy and beyond and could have implications for the habitability of exoplanets.”
      This artist’s concept shows switchbacks, or large kinks in the Sun’s magnetic field. NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez Previously, NASA’s Parker Solar Probe found that these switchbacks were common throughout the solar wind. Parker, which became the first craft to enter the Sun’s magnetic atmosphere in 2021, allowed scientists to determine that switchbacks become more distinct and more powerful close to the Sun. Up to now, however, scientists lacked experimental evidence that this interesting phenomenon actually deposits enough energy to be important in the solar wind.
      “About three years ago, I was giving a talk about how fascinating these waves are,” said co-author Mike Stevens, astrophysicist at the Center for Astrophysics. “At the end, an astronomy professor stood up and said, ‘that’s neat, but do they actually matter?’”
      To answer this, the team of scientists had to use two different spacecraft. Parker is built to fly through the Sun’s atmosphere, or “corona.” ESA’s and NASA’s Solar Orbiter mission is also on an orbit that takes it relatively close to the Sun, and it measures solar wind at larger distances. 
      The discovery was made possible because of a coincidental alignment in February 2022 that allowed both Parker Solar Probe and Solar Orbiter to measure the same solar wind stream within two days of each other. Solar Orbiter was almost halfway to the Sun while Parker was skirting the edge of the Sun’s magnetic atmosphere.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith An artist’s concept shows Solar Orbiter near the Sun. NASA’s Goddard Space Flight Center Conceptual Image Lab




      “We didn’t initially realize that Parker and Solar Orbiter were measuring the same thing at all. Parker saw this slower plasma near the Sun that was full of switchback waves, and then Solar Orbiter recorded a fast stream which had received heat and with very little wave activity,” said Samuel Badman, astrophysicist at the Center for Astrophysics and the other co-lead of the study. “When we connected the two, that was a real eureka moment.”
      Scientists have long known that energy is moved throughout the Sun‘s corona and the solar wind, at least in part, through what are known as “Alfvén waves.” These waves transport energy through a plasma, the superheated state of matter that makes up the solar wind.
      However, how much the Alfvén waves evolve and interact with the solar wind between the Sun and Earth couldn’t be measured — until these two missions were sent closer to the Sun than ever before, at the same time. Now, scientists can directly determine how much energy is stored in the magnetic and velocity fluctuations of these waves near the corona, and how much less energy is carried by the waves farther from the Sun.
      The new research shows that the Alfvén waves in the form of switchbacks provide enough energy to account for the heating and acceleration documented in the faster stream of the solar wind as it flows away from the Sun. 
      “It took over half a century to confirm that Alfvenic wave acceleration and heating are important processes, and they happen in approximately the way we think they do,” said John Belcher, emeritus professor from the Massachusetts Institute of Technology who co-discovered Alfvén waves in the solar wind but was not involved in this study.
      In addition to helping scientists better forecast solar activity and space weather, such information helps us understand mysteries of the universe elsewhere and how Sun-like stars and stellar winds operate everywhere.
      “This discovery is one of the key puzzle pieces to answer the 50-year-old question of how the solar wind is accelerated and heated in the innermost portions of the heliosphere, bringing us closer to closure to one of the main science objectives of the Parker Solar Probe mission,” said Adam Szabo, Parker Solar Probe mission science lead at NASA.
      By Megan Watzke
      Center for Astrophysics | Harvard & Smithsonian
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Orbiter Solar Science Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Zooms into the Rosy Tendrils of Andromeda


      Article


      2 hours ago
      2 min read Hubble Observes An Oddly Organized Satellite


      Article


      1 day ago
      6 min read NASA Discovers a Long-Sought Global Electric Field on Earth
      An international team of scientists has successfully measured a planet-wide electric field thought to be…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...