Jump to content

The Marshall Star for January 24, 2024


NASA

Recommended Posts

  • Publishers
23 Min Read

The Marshall Star for January 24, 2024

Artist rendition of the Imaging X-Ray Polarimetry Explorer

NASA’s IXPE Team Awarded Prestigious Rossi Prize

By Rick Smith

NASA’s IXPE (Imaging X-ray Polarimetry Explorer) team has been awarded a top prize in high-energy astronomy.

The High Energy Astrophysics Division of the American Astronomical Society (AAS) has awarded the 2024 Bruno Rossi Prize to retired NASA astrophysicist Martin Weisskopf, Italian Space Agency principal investigator Paolo Soffitta, and their team for development of IXPE, “whose novel measurements advance our understanding of particle acceleration and emission from astrophysical shocks, black holes and neutron stars,” according to the AAS announcement.

NASA’s Imaging X-ray Polarimetry Explorer mission, led by retired NASA astrophysicist Martin Weisskopf, left, and Italian Space Agency principal investigator Paolo Soffitta, has received the 2024 Rossi Prize in high-energy astronomy, awarded annually by the American Astronomical Society.
NASA’s Imaging X-ray Polarimetry Explorer mission, led by retired NASA astrophysicist Martin Weisskopf, left, and Italian Space Agency principal investigator Paolo Soffitta, has received the 2024 Rossi Prize in high-energy astronomy, awarded annually by the American Astronomical Society.
NASA/INAF

“IXPE is a realization of decades of work and belief in the importance of X-ray polarization measurements for X-ray astronomy. I am honored and excited to share this prize with Paolo Soffitta and the entire IXPE team,” said Weisskopf, who was IXPE’s principal investigator during its development. He retired from NASA in 2022.

“IXPE is the demonstration of how an idea pursued for more than 30 years has been transformed into a successful mission, thanks to the collaboration between the United States and Italy,” Soffitta said. “It’s incredible to receive this prize along with Martin Weisskopf and on behalf of so many people whose expertise and enthusiasm have made this breakthrough in astrophysics possible.”

Developed by NASA, the Italian Space Agency, and partners in a dozen countries, IXPE was launched to space on Dec. 9, 2021. Today, it orbits Earth some 340 miles up to observe X-ray emissions from powerful cosmic phenomena hundreds or thousands of light-years away. In 2023 alone, its subjects of study included blazars such as Markarian 501 and Markarian 421, supernova remnants including Tycho and SN 1006, and the supermassive black hole at the center of our own galaxy. Its success led NASA to formally extend the mission for an additional 20 months, through at least September 2025.

Artist rendition of the Imaging X-Ray Polarimetry Explorer
An artist’s illustration of the IXPE spacecraft in orbit, studying high-energy phenomena light-years from Earth.
NASA

“We at NASA are incredibly proud of Dr. Weisskopf and the IXPE team around the world,” said acting Marshall Center Director Joseph Pelfrey. “IXPE allows us to look at the universe through a vantage point never seen before. It’s particularly gratifying to continue Marshall’s long association with the Rossi Prize, which identifies singular breakthroughs and unprecedented innovation in high-energy astrophysics – a field in which our researchers excel.”

Weisskopf, together with Harvard astrophysicist Harvey Tananbaum, previously received the Rossi Prize in 2004 for their work to develop and fly NASA’s Chandra X-ray Observatory, which continues to study X-ray phenomena across the cosmos. Marshall researchers Gerald Fishman and Colleen Wilson-Hodge also were awarded the Rossi Prize in 1994 and 2018, respectively. Fishman was honored for his contributions to the Compton Gamma-ray Observatory’s BATSE (Burst and Transient Source Experiment) mission, Wilson-Hodge for her work with the Fermi GBM (Gamma-ray Burst Monitor) in August 2017, detecting gravitational and light waves from the spectacular smashup of two neutron stars in a distant galaxy.

The Rossi Prize is awarded annually for a significant recent contribution to high-energy astrophysics. The honor includes an engraved certificate and a $1,500 award.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

National Mentoring Month: The Right Type of Mentorship with Erika Alvarez and Dave Reynolds

By Celine Smith

Erika Alvarez’s path to becoming a Systems Engineering & Integration manager at NASA Headquarters has impacted the way she mentors.

“What we do at NASA takes a village,” Alvarez said. “It may take one person to make something, but there could be 10 or 15 or 20 people who help them get there.”

alvarez-hq-portrait-14aug2022.jpg?w=1638
Erika Alvarez, System Engineering and Integration manager at NASA Headquarters, and mentor to Dave Reynolds, a deputy program manager at NASA’s Marshall Space Flight Center.
NASA

Alvarez wants to be one of many guiding others to meet their goals, which is how she began mentoring Dave Reynolds, a deputy program manager at NASA’s Marshall Space Flight Center.

Alvarez and Reynolds don’t have a traditional mentorship. Both began in Marshall’s propulsion systems department in 2004. While Alvarez is younger than Reynolds, Alvarez is mentoring Reynolds.

Alvarez may not have decades more experience than Reynolds, but Alvarez joining the SES (Senior Executive Service) coincided with Reynolds wanting to transition to the SES. Their shared working experience and similar goal made a perfect fit for their mentorship.

Dave Reynolds
Reynolds is currently being mentored by Alvarez in preparation for a Senior Executive Service position.
NASA

Hoping their experience can help others during National Mentoring Month, they discussed their insight about finding the right type of mentorship.

Question: What does mentorship mean to you?

Reynolds: Mentorship is an outside perspective that benefits me by providing a better solution. You can ask your mentor about your ideas to self-examine the path that you’re on. They know you and have your best interest in mind. Your decisions are not directly going to affect them, so they can offer candid advice.

Alvarez: For me, mentorship is worth the time investment because we can get stuck in our day-to-day routine. It’s a refreshing time during the week to sit down with someone knowing what they’re experiencing and helping them, so they don’t have to navigate certain challenges on their own. I have templates, articles, rubrics, books, and other perspectives I gained through my first year in SES. Now I can offer those resources. It’s something that I want to pass on to somebody else because it takes a village to do this. Mentoring is very energizing and fruitful. It reminds me that I love NASA and it’s a great place to work. I hope that I can provide that feeling and energy to someone else and it just keeps going.

Question: What impact has mentorship had on you and your career?

Alvarez: With Dave and I starting from the same department, we had some of the same mentors early on. Mentors give you confidence to move to the next role when you’re down in the details, doing the work, and years into a position. I would also say I was fortunate enough to have a great mentor that was outside of my department. The most important trait she gave to me was resiliency. There are many times when you go for something and are unsuccessful. Having somebody that believes in you during those times is huge.

Reynolds: My first formal mentor was assigned to me while I was in the Mid-Level Leadership Program and she was in SES at NASA’s Glenn Research Center. She encouraged me to get out of engineering, because she believed I was ready for a leadership role. Without her, I wouldn’t have transitioned as quickly as I did. My current mentorship is also kicking me to the next level and informing me of all the options I need to consider. Having a mentor that has known you for a long time, like Alvarez, is beneficial. You can trust their guidance more because they’ve seen you fail, and they still believe in your success.

Question: What was the initial goal and how has that impacted the type of mentoring relationship you built?

Reynolds: The initial goal was Alvarez prepping me to become SES qualified and she’s helped me at every step. Alvarez encouraged me to apply for the ASPIRE program. Programs and tools like that are exactly what I need to know about. She’s provided a lot of information that I didn’t know I would need to consider.

A young Alvarez, third from left, and Reynolds, far right, smile for a photo taken while they were both working in the propulsion systems department at Marshall.
A young Alvarez, third from left, and Reynolds, far right, smile for a photo taken while they were both working in the propulsion systems department at Marshall.
NASA

Alvarez: I mentor a lot of people at different levels. Reynolds is a unique mentee because he is seeking out a big goal. Other mentees coming to me are in different stages, or they’re in a similar field and want to discuss the type of work I do. His goal is personal. I don’t want Reynolds to feel unprepared. I want him to go into his interview and any future roles with confidence and his best foot forward. I want Dave’s future peers to know he’s ready to lead. If Dave is successful in achieving his goal, I want to help him through that transition during the first year of his new role as well, especially with the person who last had the position being gone. I have executive mentors who are the only people I can discuss certain topics with. A part of the goal is Reynolds’ long-term success, which is why it’s important for him to have access to that network of people. If Reynolds needs help with something I’m not well-versed in, I can get him in contact with someone who is.

Question: How do you think the dynamic between mentor and mentee may differ in a formal mentoring relationship compared to an informal, casual mentoringencounter?

Reynolds: Formal mentoring relationships are more deliberate. We have a goal that we set. We’re not just having lunch, we set a scheduled time where we each have ideas we bring to discuss. Formal encounters are more structured. With informal mentorships you can also have casual lunches where good advice is thrown back and forth, but I have noticed if you’re more deliberate, you’ll get concrete progress.

Alvarez: Dave having a specific objective made the mentorship formal. The structure provided time for me to gather materials I found helpful in preparation for SES. With a hands-on approach, I could help Reynolds during his time in the ASPIRE program. We methodically planned how to reach each goal and in turn the objective. As we’re doing the work, we’re checking in consistently. Informal mentorships are hard. There’s no set amount of time spent together, and its disorganization makes it easier to lose momentum toward the objective. Informal mentorships also make it harder to feel a sense of accomplishment because progress is harder to assess.

Question: What advice do you have for someone else considering finding or being a mentor?

Alvarez: Think outside the box. Some people come in with an unconscious bias of what a mentor is. Mentees can become overly concerned with a mentor’s background. Not knowing their background is a good thing. Remain open minded about what someone else can offer you. You’re always going to get some good nuggets out of a mentorship. If someone suggests a mentor to you, take it. They might see something that neither of you do that would make a great pairing. I also recommend that some people choose mentors with a different career path like Dave and me. We shared the same foundation but then we went off in two different branches. Getting to combine those different insights is amazing because it makes us stronger.

Reynolds: As a mentee, check that you have humility. It’d be easy for me to dismiss Alvarez as a mentor because of our similarities. I recognize, she’s had a completely different life and is therefore capable of giving me an outside perspective. She’s also wicked smart, and I listen to wicked smart people. I’ve heard people reject advice from others because they are on the same tier or below career wise. That’s not a good approach. Ask yourself who can help with growth as opposed to finding somebody that that will help you up the ladder.

Editor’s note: This is the second in a Marshall Star series during National Mentoring Month in January. Marshall team members can learn more about the benefits of mentoring on Inside Marshall.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Larry Leopard Named Acting Director of Marshall’s Engineering Directorate

Larry Leopard has been named acting director of NASA Marshall Space Flight Center’s Engineering Directorate upon the retirement of Don Holder this month. He will fill the role until a permanent director is named as well as continuing his duties as Marshall’s associate director, technical.

Larry Leopard Official Portrait
Larry Leopard, Marshall’s associate director, technical, has been named acting director of NASA Marshall Space Flight Center’s Engineering Directorate.
NASA

As Marshall’s associate director, technical, Leopard provides expert advice in all facets of the center’s responsibilities by conducting special studies; provides authoritative advice and assistance in policy review; manages and reports on centerwide and directorate metrics; and develops benchmark strategies. He was appointed to the position in December 2020. Leopard previously served as director of the Engineering Directorate from 2018 to 2020.

Lisa Bates
Lisa Bates will remain as deputy director of Marshall’s Engineering Directorate.
NASA

Lisa Bates will remain as deputy director and will be responsible for the day-to-day management of the Engineering Directorate.

› Back to Top

I Am Artemis: Erick Holsonback

Whether he’s advising student robotic competitions or managing production of a powerful, new Moon rocket stage, Erick Holsonback meets technical challenges with enthusiasm.

Holsonback, a Jacobs Technology employee, is subsystem manager for production and launch operations of the exploration upper stage (EUS) for NASA’s SLS (Space Launch System) rocket. SLS is NASA’s super heavy lift rocket that will launch the agency’s Artemis campaign to the Moon. The exploration upper stage is one of two upgrades to the SLS rocket as it evolves to the Block 1B variant for missions beginning with Artemis IV. Along with the rocket’s new universal stage adapter, the SLS rocket in its Block 1B configuration will be able to send 40% more payload to the Moon in a single launch.

Erick Holsonback
Eric Holsonback, a Jacobs Technology employee, is subsystem manager for production and launch operations of the exploration upper stage for NASA’s SLS (Space Launch System) rocket.
NASA/Michael DeMocker

Holsonback’s job stretches from setting up production for the future upper stage at NASA’s Michoud Assembly Facility, where it’s built, to preparing it for launch from the agency’s Kennedy Space Center.

“It’s exciting to be part of a capability that will send more crew and cargo to the Moon in a single launch than any other current rocket,” Holsonback said. “That’s going to make operations in the challenging space environment a lot simpler.”

Growing up in North Georgia, Holsonback remembers wanting to be an astronaut and turning street cars into hot rods. He figured he’d wind up in the auto industry, until Pratt & Whitney offered him a job working on space shuttle main engine turbomachinery straight out of college in 1997. He briefly left the space business but jumped at a chance to get back in with the SLS Program in 2016 at NASA’s Marshall Space Flight Center.

“I wanted to come back and do rockets,” he recalled. “It gets in your blood. You’re part of something bigger that just yourself. Through Artemis, we are truly impacting the space program at its foundational level of how we are getting back to the Moon and to Mars.”

Holsonback’s enthusiasm for space challenges doesn’t end at the office door. In his free time, Holsonback has mentored and coached his two daughters’ technology challenge competitions. While the challenge is foremost a robotics contest, Holsonback is proud of the lessons in problem solving, technology, and project management he’s helped impart to the team along the way – which he likens to his NASA job.

You could say Erick Holsonback is working on the future personally as well as professionally, but it’s hard to beat working on a Moon rocket.

“I’ve had some great opportunities with NASA, but my current role is pretty amazing – getting to be part of building and launching,” he reflected. “I get to play a little part in the overall foundation work that is going to be part of the history of our country for years to come.”

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

Mission Success is in Our Hands: Greg Drayer

By Wayne Smith

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the third in a Marshall Star series profiling team members featured in the testimonial banners.

Greg Drayer is the JSEG (Jacobs Space Exploration Group) team lead for EV74, the Systems Analysis Branch, working at NASA’s Marshall Space Flight Center. He is also the JSEG Tech Fellow for Modeling and Simulation.

Greg Drayer is the JSEG (Jacobs Space Exploration Group) team lead for EV74, the Systems Analysis Branch, working at NASA’s Marshall Space Flight Center.
Greg Drayer is the JSEG (Jacobs Space Exploration Group) team lead for EV74, the Systems Analysis Branch, working at NASA’s Marshall Space Flight Center.
NASA/Charles Beason

He previously was a Modeling and Simulation integration systems engineer, representing NASA’s SLS (Space Launch System) Program to the Data Integration Integrated Task Team and supporting the certification of Design Math Models. He started working at Marshall in 2020. A native of Caracas, Venezuela, Drayer is a graduate of both Universidad Simon Bolivar, where he earned a bachelor’s degree in electrical engineering and magister in systems engineering, and the Georgia Institute of Technology, where he earned his doctorate with the School of Electrical and Computer Engineering. He was sponsored by the U.S. Department of State International Fulbright Science and Technology Program.

Question: What are some of your key responsibilities?

Drayer: I am responsible for the proactive management of the EV74 Branch JSEG Task Order and Systems Evaluation personnel to ensure the safe and effective accomplishment of Marshall requirements by providing engineering, scientific, and technical support to various NASA programs. My team is a high-performing group of three different sub-teams executing challenging tasks for Marshall’s Systems Engineering and Integration Division (EV70) in support of SLS, HLS (Human Landing System), and MAV (Mars Ascent Vehicle) programs, providing unique expertise in the following domains:

  • Program compliance with the NASA Standard for Models and Simulations, NASA-STD-7009.
  • Vehicle mass properties and weight management.
  • SLS photogrammetric imaging and analysis.
  • Data integration tools, systems, and processes.
  • Adoption of model-based systems engineering methodologies.

Question: How does your work support the safety and success of NASA and Marshall missions?

Drayer: The goal of our Modeling and Simulation Sub-Team at NASA is to help reduce the risks associated with models and simulations-influenced decisions by properly conveying the credibility of results to those making critical decisions in support of program compliance with NASA-STD-7009, Standard for Models and Simulations. We ensure the NASA’s commitment to excellence in satisfying the requirements of NASA-STD-7009, an outcome resulting from the Columbia Accident Investigation Board Report.

Question: What does the Mission Success is in Our Hands initiative mean to you?

Drayer: Working in support of NASA-STD-7009, this initiative hits close to home as another reminder of why we do our work the way we are required. Beyond any statistics, to me this campaign is a reminder and a challenge to ensure that we ‘Know what we build. Test what we build. Test what we fly. Test like we fly.’ We should continue learning from our past to make sure that it does not repeat in the future. This initiative helps us dedicate the time to remember why we do things the way we do them, and how we arrived at today’s NASA culture.

Question: Do you have a story or personal experience you can share that might help others understand the significance of mission assurance or flight safety?

Drayer: Coming back from COVID-19 has been a great challenge to overcome. Incredibly, we all have found some strange comfort zones from which we are now needing to come back to collaborate better. I know how much some of us value our ability to telework at times. However, I would like us all to also understand how some in-person conversations can save us many if not several hours of unending electronic communications. I would like all of us to demonstrate to ourselves why we truly need to be present in our meetings and engage as best as we can to reap the fruit of those interactions. Let us lead by example and ‘preach’ about it along the way with our actions, to the benefit of the NASA culture in a post-COVID era. As an agency, this can greatly impact our ability to ensure mission success and flight safety.

Question: How can we work together better to achieve mission success?

Drayer: We go all the way to the Moon in search of discoveries, science, and developing new technologies. And even beyond all these, we go to the Moon to find ourselves personally and each other. That journey has begun already with each weekday and at times weekends that we dedicate to work with the mission in mind, working hard to meet and exceed the expectations of our customers and our stakeholders, most important of which are our astronauts and their families.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Continues Artemis Moon Rocket Engine Tests with First Hot Fire of 2024

NASA continued a critical test series for future flights of NASA’s SLS (Space Launch System) rocket in support of the Artemis campaign Jan. 17 with a full-duration hot fire of the RS-25 engine on the Fred Haise Test Stand at NASA’s Stennis Space Center.

Data collected from the test series will be used to certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3Harris Technologies company, to help power the SLS rocket on future Artemis missions to the Moon and beyond, beginning with Artemis V. NASA’s Marshall Space Flight Center manages the SLS Program.

a hot fire of an RS-25 engine reflected in nearby body of water
NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 17, continuing a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all.
NASA/Danny Nowlin

Teams are evaluating the performance of several new engine components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The current series is the second and final series to certify production of the upgraded engines. NASA completed an initial 12-test certification series with the upgraded components in June 2023.

During the Jan. 17 test, operators followed a “test like you fly” approach, firing the engine for the same amount of time – almost eight-and-a-half minutes (500 seconds) – needed to launch SLS and at power levels ranging between 80% to 113%.

The Jan. 17 test comes three months after the current series began in October. During three tests last fall, operators fired the engine for durations from 500 to 650 seconds. The longest planned test of the series occurred on Nov. 29 when crews gimbaled, or steered, the engine during an almost 11-minute (650 seconds) hot fire. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.

Each SLS flight is powered by four RS-25 engines, firing simultaneously during launch and ascent to generate over 2 million pounds of thrust.

The first four Artemis missions with SLS are using modified space shuttle main engines that can power up to 109% of their rated level. The newly produced RS-25 engines will power up to the 111% level to provide additional thrust. Testing to the 113% power level provides an added margin of operational safety.

With the completion of the test campaign in 2024, all systems are expected to be “go” for production of 24 new RS-25 engines for missions beginning with Artemis V.

Through Artemis, NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars.

› Back to Top

Station Crew Assists Ax-3 on Advanced Space Research

The Expedition 70 crew spent Jan. 23 on a host of research activities and spacesuit maintenance while assisting their Axiom Mission 3 (Ax-3) guests on the International Space Station. The four Ax-3 crew members had their hands full as they explored cancer research, space botany, and robotics for Earth and space benefits.

The Ax-3 crew arrived Jan. 20. Astronauts Andreas Mogensen, Loral O’Hara, and Satoshi Furukawa dedicated part of their schedule to the Ax-3 mission. The trio helped the four private astronauts get up to speed with life on orbit as well as conduct advanced microgravity science.

The four Axiom Mission 3 astronauts, front row, and the seven Expedition 70 crew members wave to the camera following a crew greeting ceremony on the International Space Station on Jan. 20.
The four Axiom Mission 3 astronauts, front row, and the seven Expedition 70 crew members wave to the camera following a crew greeting ceremony on the International Space Station on Jan. 20.
NASA TV

Mogensen from ESA (European Space Agency) spent a couple of hours ensuring the Ax-3 crewmates are familiarized with systems throughout the orbital lab. O’Hara from NASA set up the LSG (Life Science Glovebox) for an Ax-3 space botany investigation while Furukawa from JAXA (Japan Aerospace Exploration) activated a microscope to look at cell samples for an Ax-3 cancer study.

Ax-3 Commander Michael López-Alegría and Mission Specialist Alper Gezeravcı worked in the Kibo laboratory module’s LSG and tested the genetic editing of space-grown plants. Results may enable genetic modifications allowing plants to adapt to weightlessness and promote crew health. Ax-3 Pilot Walter Villadei peered at cell samples inside the Kermit microscope to learn how to predict and prevent cancer both on Earth and in space.

Ax-3 Mission Specialist Marcus Wandt tested the ability to remotely control robots on Earth from the space station. Working in the Columbus laboratory module, Wandt used a laptop computer to command a team of Earth-bound robots simulating a robotic exploration mission on another planet controlled from a spacecraft.

Mogensen would go on to organize food packs, charge virtual reality hardware for a mental health study, then videotape a space physics demonstration for junior high school students. Furukawa serviced science freezers and combustion research gear before cleaning vents inside the Unity module. Furukawa wrapped up his day with eye checks with NASA Flight Engineer Jasmin Moghbeli. O’Hara operated the medical imaging gear examining the optic nerve, retina, and cornea of both astronauts. Moghbeli earlier installed and tested a camera and lights on a spacesuit helmet.

The orbiting lab’s three cosmonauts from Roscosmos focused on operations in their segment. Veteran Flight Engineer Oleg Kononenko spent his day inspecting the Zvezda service module and servicing communication and computer systems in the Nauka science module. Flight Engineer Nikolai Chub photographed the condition of Zvezda’s windows then studied how microgravity conditions such as magnetic and electrical fields affect fluid physics. Flight Engineer Konstantin Borisov deactivated Earth observation gear, downloaded vibration data the station experiences while orbiting Earth, then worked on orbital plumbing duties.

The Payload Operations Integration Center at NASA’s Marshall Space Flight Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

Learn more about station activities by following the space station blog.

› Back to Top

NASA’S OSIRIS-REx Curation Team Reveals Remaining Asteroid Sample

The astromaterials curation team at NASA’s Johnson Space Center has completed the disassembly of the OSIRIS-REx sampler head to reveal the remainder of the asteroid Bennu sample inside. On Jan. 10, they successfully removed two stubborn fasteners that had prevented the final steps of opening the TAGSAM (Touch-and-Go-Sample-Acquisition-Mechanism) head.

top-down-view-of-osiris-rex-sample.jpg?w
A top-down view of the OSIRIS-REx Touch-and-Go-Sample-Acquisition-Mechanism head with the lid removed, revealing the remainder of the asteroid sample inside.
NASA/Erika Blumenfeld & Joseph Aebersold

Erika Blumenfeld, creative lead for AIVA (Advanced Imaging and Visualization of Astromaterials) and Joe Aebersold, AIVA project lead, captured a photograph of the open TAGSAM head including the asteroid material inside using manual high-resolution precision photography and a semi-automated focus stacking procedure. The result is an image that shows extreme detail of the sample.

Next, the curation team will remove the round metal collar and prepare the glovebox to transfer the remaining sample from the TAGSAM head into pie-wedge sample trays.

These trays will be photographed before the sample is weighed, packaged, and stored at Johnson, home to the most extensive collection of astromaterials in the world. The remaining sample material includes dust and rocks up to about 0.4 inch in size. The final mass of the sample will be determined in the coming weeks. The curation team members had already collected 2.48 ounces of asteroid material from the sample hardware before the lid was removed, surpassing the agency’s goal of bringing at least 2.12 ounces to Earth.

The curation team will release a catalog of all the Bennu samples later this year, which will allow scientists and institutions around the world to submit requests for research or display.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      View the full article
    • By NASA
      24 Min Read The Marshall Star for October 16, 2024
      Liftoff! NASA’s Europa Clipper Sails Toward Ocean Moon of Jupiter
      NASA’s Europa Clipper has embarked on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. The spacecraft launched at 11:06 a.m. CDT on Oct. 14 aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center.
      A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at the agency’s Kennedy Space Center at 11:06 a.m. CDT on Oct. 14. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.Credit: NASA/Kim Shiflett The largest spacecraft NASA ever built for a mission headed to another planet, Europa Clipper also is the first NASA mission dedicated to studying an ocean world beyond Earth. The spacecraft will travel 1.8 billion miles on a trajectory that will leverage the power of gravity assists, first to Mars in four months and then back to Earth for another gravity assist flyby in 2026. After it begins orbiting Jupiter in April 2030, the spacecraft will fly past Europa 49 times.
      “Congratulations to our Europa Clipper team for beginning the first journey to an ocean world beyond Earth,” said NASA Administrator Bill Nelson. “NASA leads the world in exploration and discovery, and the Europa Clipper mission is no different. By exploring the unknown, Europa Clipper will help us better understand whether there is the potential for life not just within our solar system, but among the billions of moons and planets beyond our Sun.”
      Approximately five minutes after liftoff, the rocket’s second stage fired up and the payload fairing, or the rocket’s nose cone, opened to reveal Europa Clipper. About an hour after launch, the spacecraft separated from the rocket. Ground controllers received a signal soon after, and two-way communication was established at 12:13 p.m. with NASA’s Deep Space Network facility in Canberra, Australia. Mission teams celebrated as initial telemetry reports showed Europa Clipper is in good health and operating as expected.
      “We could not be more excited for the incredible and unprecedented science NASA’s Europa Clipper mission will deliver in the generations to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters. “Everything in NASA science is interconnected, and Europa Clipper’s scientific discoveries will build upon the legacy that our other missions exploring Jupiter – including Juno, Galileo, and Voyager – created in our search for habitable worlds beyond our home planet.”
      The main goal of the mission is to determine whether Europa has conditions that could support life. Europa is about the size of our own Moon, but its interior is different. Information from NASA’s Galileo mission in the 1990s showed strong evidence that under Europa’s ice lies an enormous, salty ocean with more water than all of Earth’s oceans combined. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface.
      If the mission determines Europa is habitable, it may mean there are more habitable worlds in our solar system and beyond than imagined.
      “We’re ecstatic to send Europa Clipper on its way to explore a potentially habitable ocean world, thanks to our colleagues and partners who’ve worked so hard to get us to this day,” said Laurie Leshin, director, NASA’s Jet Propulsion Laboratory (JPL). “Europa Clipper will undoubtedly deliver mind-blowing science. While always bittersweet to send something we’ve labored over for years off on its long journey, we know this remarkable team and spacecraft will expand our knowledge of our solar system and inspire future exploration.”
      In 2031, the spacecraft will begin conducting its science-dedicated flybys of Europa. Coming as close as 16 miles to the surface, Europa Clipper is equipped with nine science instruments and a gravity experiment, including an ice-penetrating radar, cameras, and a thermal instrument to look for areas of warmer ice and any recent eruptions of water. As the most sophisticated suite of science instruments NASA has ever sent to Jupiter, they will work in concert to learn more about the moon’s icy shell, thin atmosphere, and deep interior.
      To power those instruments in the faint sunlight that reaches Jupiter, Europa Clipper also carries the largest solar arrays NASA has ever used for an interplanetary mission. With arrays extended, the spacecraft spans 100 feet from end to end. With propellant loaded, it weighs about 13,000 pounds.
      In all, more than 4,000 people have contributed to Europa Clipper mission since it was formally approved in 2015.
      “As Europa Clipper embarks on its journey, I’ll be thinking about the countless hours of dedication, innovation, and teamwork that made this moment possible,” said Jordan Evans, project manager, JPL. “This launch isn’t just the next chapter in our exploration of the solar system; it’s a leap toward uncovering the mysteries of another ocean world, driven by our shared curiosity and continued search to answer the question, ‘are we alone?’”
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center, Marshall Space Flight Center, and Langley Research Center. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft.
      › Back to Top
      Staying the Course: 30 Years of NASA’s Student Rover Challenge
      Get ready, get set, and let’s go take a look back at NASA’s 2024 Human Exploration Rover Challenge! Watch as talented student teams from around the world gather in Huntsville for the 30th annual competition to push the boundaries of innovation and engineering. These student teams piloted their human-powered rovers over simulated lunar and Martian terrain for a chance at winning an award during this Artemis student challenge. From jaw-dropping triumphs to unexpected setbacks, this year’s competition was a thrilling ride from start to finish. Buckle up and enjoy the ride as you witness the future of space exploration unfold!
      The challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at the agency’s Marshall Space Flight Center. Learn more about the challenge.
      › Back to Top
      Black Hole Destroys Star, Goes After Another, NASA Missions Find
      NASA’s Chandra X-ray Observatory and other telescopes have identified a supermassive black hole that has torn apart one star and is now using that stellar wreckage to pummel another star or smaller black hole, as described in our latest press release. This research helps connect two cosmic mysteries and provides information about the environment around some of the bigger types of black holes.
      This artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive black hole (depicted on the right) tore apart a star through intense tidal forces.X-ray: NASA/CXC/Queen’s Univ. Belfast/M. Nicholl et al.; Optical/IR: PanSTARRS, NSF/Legacy Survey/SDSS; Illustration: Soheb Mandhai / The Astro Phoenix; Image Processing: NASA/CXC/SAO/N. Wolk This artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive black hole (depicted on the right) tore apart a star through intense tidal forces. Over the course of a few years, this disk expanded outward until it intersected with another object – either a star or a small black hole – that is also in orbit around the giant black hole. Each time this object crashes into the disk, it sends out a burst of X-rays detected by Chandra. The inset shows Chandra data (purple) and an optical image of the source from Pan-STARRS (red, green, and blue).
      In 2019, an optical telescope in California noticed a burst of light that astronomers later categorized as a “tidal disruption event”, or TDE. These are cases where black holes tear stars apart if they get too close through their powerful tidal forces. Astronomers gave this TDE the name of AT2019qiz.
      Meanwhile, scientists were also tracking instances of another type of cosmic phenomena occasionally observed across the Universe. These were brief and regular bursts of X-rays that were near supermassive black holes. Astronomers named these events “quasi-periodic eruptions,” or QPEs.
      This latest study gives scientists evidence that TDEs and QPEs are likely connected. The researchers think that QPEs arise when an object smashes into the disk left behind after the TDE. While there may be other explanations, the authors of the study propose this is the source of at least some QPEs.
      In 2023, astronomers used both Chandra and Hubble to simultaneously study the debris left behind after the tidal disruption had ended. The Chandra data were obtained during three different observations, each separated by about 4 to 5 hours. The total exposure of about 14 hours of Chandra time revealed only a weak signal in the first and last chunk, but a very strong signal in the middle observation.
      From there, the researchers used NASA’s Neutron Star Interior Composition Explorer (NICER) to look frequently at AT2019qiz for repeated X-ray bursts. The NICER data showed that AT2019qiz erupts roughly every 48 hours. Observations from NASA’s Neil Gehrels Swift Observatory and India’s AstroSat telescope cemented the finding.
      The ultraviolet data from Hubble, obtained at the same time as the Chandra observations, allowed the scientists to determine the size of the disk around the supermassive black hole. They found that the disk had become large enough that if any object was orbiting the black hole and took about a week or less to complete an orbit, it would collide with the disk and cause eruptions.
      This result has implications for searching for more quasi-periodic eruptions associated with tidal disruptions. Finding more of these would allow astronomers to measure the prevalence and distances of objects in close orbits around supermassive black holes. Some of these may be excellent targets for the planned future gravitational wave observatories.
      The paper describing these results appears in the Oct. 9 issue of the journal Nature. The first author of the paper is Matt Nicholl of Queen’s University Belfast in Ireland.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      › Back to Top
      Revealing the Hidden Universe with Full-shell X-ray Optics at Marshall
      The study of X-ray emission from astronomical objects reveals secrets about the universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.
      A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines.Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech X-ray observations also enable us to probe mysteries of the universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres.
      At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the universe’s X-ray mysteries into sharper focus.
      Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection. In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.
      A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).
      Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds. The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better. 
      Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane.NASA Marshall has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. Marshall utilizes an electroformed nickel replication technique to make these thin full-shell X-ray optics from nickel alloy.
      X-ray optics development at Marshall began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, Marshall launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula. This initial effort resulted in several follow-up missions over the next 12 years and became known as the High Energy Replicated Optics (HERO) balloon program.
      In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with Marshall optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven Marshall-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with a Marshall-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.
      Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution Marshall MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently Marshall is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.
      The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, Marshall is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.
      Scientists Wayne Baumgartner, left, crouched, and Nick Thomas, left, standing, calibrate an IXPE MMA in the Marshall 100 m Beamline. Scientist Stephen Bongiorno, right, applies epoxy to an IXPE shell during MMA assembly.NASA Given that these optics are made with the electroformed nickel replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.
      Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at Marshall are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.
      Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.
      At the center, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.
      Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, Marshall is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, Marshall is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.
      › Back to Top
      Hubble, New Horizons Team Up for a Simultaneous Look at Uranus
      NASA’s Hubble Space Telescope and New Horizons spacecraft simultaneously set their sights on Uranus recently, allowing scientists to make a direct comparison of the planet from two very different viewpoints. The results inform future plans to study like types of planets around other stars.
      NASA’s Hubble Space Telescope (left) and NASA’s New Horizon’s spacecraft (right) image the planet Uranus.NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI) Astronomers used Uranus as a proxy for similar planets beyond our solar system, known as exoplanets, comparing high-resolution images from Hubble to the more-distant view from New Horizons. This combined perspective will help scientists learn more about what to expect while imaging planets around other stars with future telescopes.
      “While we expected Uranus to appear differently in each filter of the observations, we found that Uranus was actually dimmer than predicted in the New Horizons data taken from a different viewpoint,” said lead author Samantha Hasler of the Massachusetts Institute of Technology in Cambridge and New Horizons science team collaborator.
      Direct imaging of exoplanets is a key technique for learning about their potential habitability, and offers new clues to the origin and formation of our own solar system. Astronomers use both direct imaging and spectroscopy to collect light from the observed planet and compare its brightness at different wavelengths. However, imaging exoplanets is a notoriously difficult process because they’re so far away. Their images are mere pinpoints and so are not as detailed as the close-up views that we have of worlds orbiting our Sun. Researchers can also only directly image exoplanets at “partial phases,” when only a portion of the planet is illuminated by their star as seen from Earth.
      Uranus was an ideal target as a test for understanding future distant observations of exoplanets by other telescopes for a few reasons. First, many known exoplanets are also gas giants similar in nature. Also, at the time of the observations, New Horizons was on the far side of Uranus, 6.5 billion miles away, allowing its twilight crescent to be studied – something that cannot be done from Earth. At that distance, the New Horizons view of the planet was just several pixels in its color camera, called the Multispectral Visible Imaging Camera.
      On the other hand, Hubble, with its high resolution, and in its low-Earth orbit 1.7 billion miles away from Uranus, was able to see atmospheric features such as clouds and storms on the day side of the gaseous world.
      “Uranus appears as just a small dot on the New Horizons observations, similar to the dots seen of directly imaged exoplanets from observatories like Webb or ground-based observatories,” Hasler said. “Hubble provides context for what the atmosphere is doing when it was observed with New Horizons.”
      The gas giant planets in our solar system have dynamic and variable atmospheres with changing cloud cover. How common is this among exoplanets? By knowing the details of what the clouds on Uranus looked like from Hubble, researchers can verify what is interpreted from the New Horizons data. In the case of Uranus, both Hubble and New Horizons saw that the brightness did not vary as the planet rotated, which indicates that the cloud features were not changing with the planet’s rotation.
      In this image, two three-dimensional shapes, top, of Uranus are compared to the actual views of the planet from NASA’s Hubble Space Telescope, bottom left, and NASA’s New Horizon’s spacecraft, bottom right. Comparing high-resolution images from Hubble to the smaller view from New Horizons offers a combined perspective that will help researchers learn more about what to expect while imaging planets around other stars with future observatories. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI) However, the importance of the detection by New Horizons has to do with how the planet reflects light at a different phase than what Hubble, or other observatories on or near Earth, can see. New Horizons showed that exoplanets may be dimmer than predicted at partial and high phase angles, and that the atmosphere reflects light differently at partial phase.
      NASA has two major upcoming observatories in the works to advance studies of exoplanet atmospheres and potential habitability.
      “These landmark New Horizons studies of Uranus from a vantage point unobservable by any other means add to the mission’s treasure trove of new scientific knowledge, and have, like many other datasets obtained in the mission, yielded surprising new insights into the worlds of our solar system,” added New Horizons principal investigator Alan Stern of the Southwest Research Institute.
      NASA’s upcoming Nancy Grace Roman Space Telescope, set to launch by 2027, will use a coronagraph to block out a star’s light to directly see gas giant exoplanets. NASA’s Habitable Worlds Observatory, in an early planning phase, will be the first telescope designed specifically to search for atmospheric biosignatures on Earth-sized, rocky planets orbiting other stars.
      “Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing for these future missions,” concluded Hasler. “And that will be critical to our success.”
      Launched in January 2006, New Horizons made the historic flyby of Pluto and its moons in July 2015, before giving humankind its first close-up look at one of these planetary building block and Kuiper Belt object, Arrokoth, in January 2019. New Horizons is now in its second extended mission, studying distant Kuiper Belt objects, characterizing the outer heliosphere of the Sun, and making important astrophysical observations from its unmatched vantage point in distant regions of the solar system.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      The Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. Southwest Research Institute, based in San Antonio and Boulder, Colorado, directs the mission via Principal Investigator Alan Stern and leads the science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers program, managed by NASA’s Marshall Space Flight Center.
      › Back to Top
      Crew-8 Awaits Splashdown; Expedition 72 Stays Focused on Science
      Four International Space Station crew members continue waiting for their departure date as mission managers monitor weather conditions off the coast of Florida. The rest of the Expedition 72 crew stayed focused Oct. 14 on space biology and lab maintenance aboard the orbital outpost.
      The SpaceX Dragon Freedom spacecraft is pictured through the window of the SpaceX Dragon Endeavour spacecraft with a vivid green and pink aurora below.NASA NASA and SpaceX mission managers are watching unfavorable weather conditions off the Florida coast right now for the splashdown of the SpaceX Crew-8 mission with NASA astronauts Matthew Dominick, Mike Barratt, and Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin. The homebound quartet spent Oct. 14 mostly relaxing while also continuing departure preps. Mission teams are currently targeting Dragon Endeavour’s undocking for no earlier than 2:05 a.m. CDT on Oct. 18. The Crew-8 foursome is in the seventh month of their space research mission that began on March 3.
      The other seven orbital residents will stay aboard the orbital outpost until early 2025. NASA astronaut Don Pettit is scheduled to return to Earth first in February with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard the Soyuz MS-26 crew ship. Next, station Commander Suni Williams and flight engineer Butch Wilmore are targeted to return home aboard SpaceX Dragon Freedom with SpaceX Crew-9 Commander Nick Hague, all three NASA astronauts, and Roscosmos cosmonaut Aleksandr Gorbunov.
      Williams had a light duty day Oct. 14 disassembling life support gear before working out for a cardio fitness study. Wilmore installed a new oxygen recharge tank and began transferring oxygen into tanks located in the Quest airlock. Hague collected his blood and saliva samples for incubation and cold stowage to learn how microgravity affects cellular immunity. Pettit also had a light duty day servicing biology hardware including the Cell Biology Experiment Facility, a research incubator with an artificial gravity generator, and the BioLab, which supports observations of microbes, cells, tissue cultures and more.
      The Huntsville Operations Support Center (HOSC) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the CCP, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      The first flight of Sierra Space’s Dream Chaser to the space station is now scheduled for no earlier than May 2025 to allow for completion of spacecraft testing. Dream Chaser, which will launch atop a ULA (United Launch Alliance) Vulcan rocket and later glide to a runway landing at NASA’s Kennedy Space Center, will carry cargo to the orbiting laboratory and stay on board for approximately 45 days on its first mission.
      Learn more about station activities by following the space station blog.
      › Back to Top
      View the full article
    • By European Space Agency
      View the full article
    • By NASA
      Researchers verified that 3D micro-computed tomography scans can map the orientation of plant roots in space and used the method to demonstrate that carrots grown in actual and simulated microgravity both had random root orientation. These findings suggest that simulated microgravity offers a reliable and more affordable tool for studying plant adaptation to spaceflight.

      MULTI-TROP evaluated the role of gravity and other factors on plant growth. Plant roots grow downward in response to gravity on Earth, but in random directions in microgravity, which is a challenge for developing plant growth facilities for space. Results from this investigation could help address this challenge, advancing efforts to grow plants for food and other uses on future space missions as well as improving plant cultivation on Earth.
      Preflight image of the BIOKON facility used to grow carrots for MULTI-TROP. Kayser Italia For climate model simulations, researchers developed four parameters of electrical discharges from thunderclouds that produce visual emissions known as Blue LUminous Events or BLUEs. BLUEs are thought to affect regional atmospheric chemistry and climate. The parameters reported by this study could inform models that help test the global and regional effects of thunderstorm corona discharges, including how their geographic distribution and global occurrence rate will change as the atmosphere warms.

      ASIM, an investigation from ESA (European Space Agency), studies high-altitude lightning in thunderstorms and the role it plays in Earth’s atmosphere and climate. Scientists need to understand processes occurring in Earth’s upper atmosphere to determine how lightning is connected to Earth’s climate and weather so they can develop better atmospheric models to guide weather and climate predictions.
      Lightning in a thunderstorm off the coast of Africa as seen from the International Space Station. NASA/Matthew Dominick A technique to detect sounds generated by the inner ear could be used as a non-invasive tool for monitoring changes in fluid pressure in the head during spaceflight. Increased fluid pressure in the head that occurs in microgravity can cause visual impairment and may also affect the middle and inner ear. Insight into fluid pressure changes could help scientists develop ways to protect astronauts from these effects.

      The ESA and ASI investigation Acoustic Diagnostics monitored hearing function in astronauts on long-term missions using otoacoustic emissions (sounds generated by the inner ear in response to specific tones). Researchers compared these measurements before and during flight to indirectly detect changes in fluid pressure in the head. Different body position and fit of the ear probes affected results of the test and the authors note that these issues need to be addressed.
      NASA astronaut Drew Morgan participates in a hearing test for the Acoustic Diagnostics investigation. ESA (European Space Agency)/Luca ParmitanoView the full article
    • By European Space Agency
      View the full article
  • Check out these Videos

×
×
  • Create New...