Jump to content

Celebrating NASA’s Spirit and Opportunity Rovers’ Mars Landings


Recommended Posts

  • Publishers
Posted
In this commemorative poster, Spirit and Opportunity, NASA's twin rovers, pose atop the rocky Martian landscape, facing away from each other. The dominant colors of the image are red, purple, orange, and white. The Martian sky, which fades from purple at the top to orange at the bottom, takes up three-quarters of the image. A light orange "20" in a thin, simple font stretches over the sky; it is slightly covered up by the rovers. At bottom left is the text "Trailblazers" and "Spirit & Opportunity 20th Anniversary." At bottom right is the red JPL logo.
NASA/JPL-Caltech

NASA’s twin rovers, Spirit and Opportunity, stand on the Martian landscape in this poster created to commemorate their 20th landing anniversary.

The rovers landed in January 2004, on opposite sides of the planet in locales that scientists suspected had been affected by liquid water in the past. Their main scientific objective was to search for a range of rocks and soil types and then look for clues for past water activity on Mars—and what they found rewrote textbooks.

In addition to proving that water once existed on Mars, the rovers also far exceeded their initial planned lifetimes. Spirit operated for 6 years, 2 months, and 19 days, more than 25 times its original intended lifetime, and Opportunity operated for almost 15 years, setting several records.

Download the poster free here.

Image Credit: NASA/JPL-Caltech

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper as it flies by Mars, using the planet’s gravitational force to alter the spacecraft’s path on its way to the Jupiter system. NASA/JPL-Caltech The orbiter bound for Jupiter’s moon Europa will investigate whether the moon is habitable, but it first will get the help of Mars’ gravitational force to get to deep space.
      On March 1, NASA’s Europa Clipper will streak just 550 miles (884 kilometers) above the surface of Mars for what’s known as a gravity assist — a maneuver to bend the spacecraft’s trajectory and position it for a critical leg of its long voyage to the Jupiter system. The close flyby offers a bonus opportunity for mission scientists, who will test their radar instrument and thermal imager.
      Europa Clipper will be closest to the Red Planet at 12:57 p.m. EST, approaching it at about 15.2 miles per second (24.5 kilometers per second) relative to the Sun. For about 12 hours prior and 12 hours after that time, the spacecraft will use the gravitational pull of Mars to pump the brakes and reshape its orbit around the Sun. As the orbiter leaves Mars behind, it will be traveling at a speed of about 14 miles per second (22.5 kilometers per second).
      The flyby sets up Europa Clipper for its second gravity assist — a close encounter with Earth in December 2026 that will act as a slingshot and give the spacecraft a velocity boost. After that, it’s a straightforward trek to the outer solar system; the probe is set to arrive at Jupiter’s orbit in April 2030.
      “We come in very fast, and the gravity from Mars acts on the spacecraft to bend its path,” said Brett Smith, a mission systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Meanwhile, we’re exchanging a small amount of energy with the planet, so we leave on a path that will bring us back past Earth.”
      This animation depicts NASA’s Europa Clipper as it flies by the Red Planet. The spacecraft will use the planet’s gravity to bend its path slightly, setting up the next leg of its long journey to investigate Jupiter’s icy moon Europa. NASA/JPL-Caltech Harnessing Gravity
      Europa Clipper launched from Kennedy Space Center in Florida on Oct. 14, 2024, via a SpaceX Falcon Heavy, embarking on a 1.8-billion-mile (2.9-billion-kilometer) trip to Jupiter, which is five times farther from the Sun than Earth is. Without the assists from Mars in 2025 and from Earth in 2026, the 12,750-pound (6,000-kilogram) spacecraft would require additional propellant, which adds weight and cost, or it would take much longer to get to Jupiter.
      Gravity assists are baked into NASA’s mission planning, as engineers figure out early on how to make the most of the momentum in our solar system. Famously, the Voyager 1 and Voyager 2 spacecraft, which launched in 1977, took advantage of a once-in-a-lifetime planetary lineup to fly by the gas giants, harnessing their gravity and capturing data about them.
      While navigators at JPL, which manages Europa Clipper and Voyager, have been designing flight paths and using gravity assists for decades, the process of calculating a spacecraft’s trajectory in relation to planets that are constantly on the move is never simple.
      “It’s like a game of billiards around the solar system, flying by a couple of planets at just the right angle and timing to build up the energy we need to get to Jupiter and Europa,” said JPL’s Ben Bradley, Europa Clipper mission planner. “Everything has to line up — the geometry of the solar system has to be just right to pull it off.”
      About 4½ months after its launch, NASA’s Europa Clipper is set to perform a gravity as-sist maneuver as it flies by Mars on March 1. Next year the spacecraft will swing back by Earth for a final gravity assist before NASA/JPL-Caltech Refining the Path
      Navigators sent the spacecraft on an initial trajectory that left some buffer around Mars so that if anything were to go wrong in the weeks after launch, Europa Clipper wouldn’t risk impacting the planet. Then the team used the spacecraft’s engines to veer closer to Mars’ orbit in what are called trajectory correction maneuvers, or TCMs.
      Mission controllers have performed three TCMs to set the stage for the Mars gravity assist — in early November, late January, and on Feb. 14. They will conduct another TCM about 15 days after the Mars flyby to ensure the spacecraft is on track and are likely to conduct additional ones — upwards of 200 — throughout the mission, which is set to last until 2034.
      Opportunity for Science
      While navigators are relying on the gravity assist for fuel efficiency and to keep the spacecraft on their planned path, scientists are looking forward to the event to take advantage of the close proximity to the Red Planet and test two of the mission’s science instruments.
      About a day prior to the closest approach, the mission will calibrate the thermal imager, resulting in a multicolored image of Mars in the months following as the data is returned and scientists process the data. And near closest approach, they’ll have the radar instrument perform a test of its operations — the first time all its components will be tested together. The radar antennas are so massive, and the wavelengths they produce so long that it wasn’t possible for engineers to test them on Earth before launch.   
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper/
      Check out Europa Clipper's Mars flyby in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 
      2025-024
      Share
      Details
      Last Updated Feb 25, 2025 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Explore More
      2 min read Is There Potential for Life on Europa? We Asked a NASA Expert: Episode 52
      Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago 5 min read NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A new international study partially funded by NASA on how Mars got its iconic red color adds to evidence that Mars had a cool but wet and potentially habitable climate in its ancient past.
      Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being .6km/pixel. The mosaic is composed of 102 Viking Orbiter images of Mars. The center of the scene (lat -8, long 78) shows the entire Valles Marineris canyon system, over 2000 kilometers long and up to 8 kilometers deep, extending form Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. Many huge ancient river channels begin from the chaotic terrain from north-central canyons and run north. The three Tharsis volcanoes (dark red spots), each about 25 kilometers high, are visible to the west. South of Valles Marineris is very ancient terrain covered by many impact craters.NASA The current atmosphere of Mars is too cold and thin to support liquid water, an essential ingredient for life, on its surface for lengthy periods. However, various NASA and international missions have found evidence that water was abundant on the Martian surface billions of years ago during a more clement era, such as features that resemble dried-up rivers and lakes, and minerals that only form in the presence of liquid water.
      Adding to this evidence, results from a study published February 25 in the journal Nature Communications suggest that the water-rich iron mineral ferrihydrite may be the main culprit behind Mars’ reddish dust. Martian dust is known to be a hodgepodge of different minerals, including iron oxides, and this new study suggests one of those iron oxides, ferrihydrite, is the reason for the planet’s color.
      The finding offers a tantalizing clue to Mars’ wetter and potentially more habitable past because ferrihydrite forms in the presence of cool water, and at lower temperatures than other previously considered minerals, like hematite. This suggests that Mars may have had an environment capable of sustaining liquid water before it transitioned from a wet to a dry environment billions of years ago.
      “The fundamental question of why Mars is red has been considered for hundreds if not for thousands of years,” said lead author Adam Valantinas, a postdoctoral fellow at Brown University, Providence, Rhode Island, who started the work as a Ph.D. student at the University of Bern, Switzerland. “From our analysis, we believe ferrihydrite is everywhere in the dust and also probably in the rock formations, as well. We’re not the first to consider ferrihydrite as the reason for why Mars is red, but we can now better test this using observational data and novel laboratory methods to essentially make a Martian dust in the lab.”
      Laboratory sample showing simulated Martian dust. The ochre color is characteristic of iron-rich ferrihydrite, a mineral that provides crucial insights into ancient water activity and environmental conditions on Mars. The fine-powder mixture consists of ferrihydrite and ground basalt with particles less than one micrometer in size (1/100th diameter of a human hair) (Sample scale: 1 inch across).Adam Valantinas “These new findings point to a potentially habitable past for Mars and highlight the value of coordinated research between NASA and its international partners when exploring fundamental questions about our solar system and the future of space exploration,” said Geronimo Villanueva, the Associate Director for Strategic Science of the Solar System Exploration Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-author of this study.
      The researchers analyzed data from multiple Mars missions, combining orbital observations from instruments on NASA’s Mars Reconnaissance Orbiter, ESA’s (the European Space Agency) Mars Express and Trace Gas Orbiter with ground-level measurements from NASA rovers like Curiosity, Pathfinder, and Opportunity. Instruments on the orbiters and rovers provided detailed spectral data of the planet’s dusty surface. These findings were then compared to laboratory experiments, where the team tested how light interacts with ferrihydrite particles and other minerals under simulated Martian conditions.
      “What we want to understand is the ancient Martian climate, the chemical processes on Mars — not only ancient — but also present,” said Valantinas. “Then there’s the habitability question: Was there ever life? To understand that, you need to understand the conditions that were present during the time of this mineral’s formation. What we know from this study is the evidence points to ferrihydrite forming and for that to happen there must have been conditions where oxygen from air or other sources and water can react with iron. Those conditions were very different from today’s dry, cold environment. As Martian winds spread this dust everywhere, it created the planet’s iconic red appearance.”
      Whether the team’s proposed formation model is correct could be definitively tested after samples from Mars are delivered to Earth for analysis.
      “The study really is a door-opening opportunity,” said Jack Mustard of Brown University, a senior author on the study. “It gives us a better chance to apply principles of mineral formation and conditions to tap back in time. What’s even more important though is the return of the samples from Mars that are being collected right now by the Perseverance rover. When we get those back, we can actually check and see if this is right.”
      Part of the spectral measurements were performed at NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. RELAB is supported by NASA’s Planetary Science Enabling Facilities program, part of the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters in Washington.
      By William Steigerwald
      NASA Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Feb 24, 2025 EditorWilliam SteigerwaldContactLonnie Shekhtmanlonnie.shekhtman@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      The Solar System Mars Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind,…
      Article 4 days ago 2 min read How Long Does it Take to Get to the Moon… Mars… Jupiter? We Asked a NASA Expert: Episode 51
      So how long does it take to get from Earth to the Moon, to Mars…
      Article 6 days ago View the full article
    • By European Space Agency
      The Red Planet’s iconic rusty dust has a much wetter history than previously assumed, find scientists combining European Space Agency (ESA) and NASA spacecraft data with new laboratory experiments on replica Mars dust. The results suggest that Mars rusted early in the planet’s ancient past, when liquid water was more widespread.
      View the full article
    • By NASA
      Explore This Section Mars Home Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates 2 min read
      Gardens on Mars? No, Just Rocks!
      NASA’s Mars Perseverance rover acquired this image of the area in front of it, showing the Serpentine Lake abrasion patch on the right-hand-side of the rock, with the Green Gardens sampling location on the left. The rover used its onboard Front Right Hazard Avoidance Camera A, and captured the image on Feb. 16, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 16:45:19. NASA/JPL-Caltech Over the past week, Perseverance has been parked at a location called “Tablelands,” an area containing the “Serpentine Lake” abrasion patch acquired a few weeks ago. The Mars 2020 team has been diligently analyzing the data from the abrasion patch, and these findings led to the decision to return to Tablelands and attempt a sample at this location. Due to the disaggregated material thwarting our last sample attempt at “Cat Arm Reservoir,” the team was eagerly awaiting results from this sampling attempt at a target called “Green Gardens.”
      Then, very early Monday morning, the CacheCam images came down confirming that Perseverance had collected another core on Mars! The team will be working next on sealing this sample tube.
      NASA’s Mars Perseverance rover acquired this image using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. The material seen inside the coring bit is the Green Gardens sample. This image was acquired on Feb. 17, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 19:16:24. NASA/JPL-Caltech Tablelands, the rock from which the Green Gardens core comes, is exciting to the Science Team because it contains serpentine minerals. These serpentine minerals likely formed several billion years ago when water interacted with rocks before Jezero crater formed. Water altered the minerals originally present in the rock into serpentine, which is often green in color. This characteristic green color is why the team chose the name “Green Gardens” for this sample target. These minerals are especially exciting because their structure and composition can tell us about the history of water on Mars. The formation of serpentine on Earth can support microbial communities, and the same might have been true on Mars. A sample like this from the Jezero crater rim is an important piece of the puzzle to Jezero’s watery past!
      Perseverance is planning to conclude its time at Serpentine Lake with more science observations of the Tablelands outcrop. These measurements could include a reexamination of the Serpentine Lake abrasion patch and analysis of the tailings pile produced by the Green Gardens drill. After snaking around this area for a couple weeks, our next drives will take us further down the slope of the crater rim. We’ll head toward our next stop at a site called “Broom Point,” where more exciting discoveries await!
      Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
      Share








      Details
      Last Updated Feb 24, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4458-4460: Winter Schminter


      Article


      4 days ago
      3 min read Cookies, Cream, and Crumbling Cores


      Article


      7 days ago
      2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      The Crew Health and Performance Exploration Analog (CHAPEA) team hosts a Media Day at NASA’s Johnson Space Center in Houston on April 11, 2023.Credit: NASA Media are invited to visit NASA’s simulated Mars habitat on Monday, March 10, at the agency’s Johnson Space Center in Houston. The simulation will help prepare humanity for future missions to the Red Planet.
      This is the second of three missions as part of NASA’s CHAPEA (Crew Health and Performance Exploration Analog), set to begin in May 2025 when volunteer crew members enter the 3D printed habitat to live and work for a year.
      During the mission, crew members will carry out different types of mission activities, including simulated “marswalks,” robotic operations, habitat maintenance, personal hygiene, exercise, and crop growth. Crew also will face planned environmental stressors such as resource limitations, isolation, and equipment failure.
      The in-person media event includes an opportunity to speak with subject matter experts and capture b-roll and photos inside the habitat. Crew members will arrive for training at a later date and will not be available at this event.
      To attend the event, U.S. media must request accreditation by 5 p.m. CDT Monday, March 3, and international media by 5 p.m., Monday, Feb. 24, via the NASA Johnson newsroom at: 281-483-5111 or jsccommu@nasa.gov. Media accreditation will be limited due to limited space inside the habitat. Confirmed media will receive additional details on how to participate.
      For more information about CHAPEA, visit:
      https://www.nasa.gov/humans-in-space/chapea
      -end-
      Cindy Anderson / James Gannon
      Headquarters, Washington
      202-358-1600
      cindy.anderson@nasa.gov / james.h.gannon@nasa.gov
      Kelsey Spivey
      Johnson Space Center, Houston
      281-483-5111
      kelsey.m.spivey@nasa.gov
      Victoria Segovia
      Johnson Space Center, Houston
      281-483-5111
      victoria.segovia@nasa.gov
      Share
      Details
      Last Updated Feb 20, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Analog Field Testing Crew Health and Performance Exploration Analog (CHAPEA) Johnson Space Center View the full article
  • Check out these Videos

×
×
  • Create New...