Jump to content

How NASA Chases and Investigates Bright Cosmic Blips


Recommended Posts

  • Publishers
Posted

9 min read

How NASA Chases and Investigates Bright Cosmic Blips

A dying star is shown with two jets emerging from it against a red hazy circle
Astronomers think a long GRB (gamma-ray burst) arises from a massive, rapidly rotating star when its core runs out of fuel and collapses, forming a black hole in the star’s center. In this artist’s concept, two jets emerge from the dying star and interact with surrounding gas and dust.
NASA’s Goddard Space Flight Center Conceptual Image Lab

Stephen Lesage’s phone started vibrating just after halftime on Oct. 9, 2022, while he was watching a soccer game in Atlanta with a friend. When Lesage saw the incoming messages, the match no longer seemed important. There had been a rare cosmic event, and he needed to get to his computer immediately.

NASA’s Fermi Gamma-Ray Satellite and Neil Gehrels Swift Observatory had spotted an unusually bright signal in space, and sent automatic alerts to scientists. Lesage’s team’s Fermi chat channel lit up with messages as scientists coordinated their follow-up strategy.

“Everyone in that group was like, ‘this thing’s crazy! Who’s on duty to analyze this? This is what we’ve been waiting for,’” Lesage, a graduate student at the University of Alabama, Huntsville, recalled. “Time to go!”

The unusual event turned to be a cosmic burst that may have been the brightest at X-ray and gamma-ray energies since civilization began. Astronomers dubbed it the BOAT, “the brightest of all time.” Lesage led an analysis of Fermi data that demonstrated just how bright the BOAT really was. More than 150 telescopes in space and on Earth followed up to get more details of the event including NASA’s IXPE (Imaging X-ray Polarimetry Explorer ), Hubble Space Telescope, and James Webb Space Telescope, as well as the European Space Agency’s XMM-Newton telescope.

The Universe is Changing

The BOAT is an example of what astronomers call Time-Domain and Multi-Messenger Astronomy. The “Time Domain” part refers to events that happen in the universe that telescopes can observe as they unfold, such as a supernova or the merger of two neutron stars. “Multimessenger Astronomy” refers to the variety of “messengers” that deliver information from the universe, including all forms of light, high-energy particles, and ripples in spacetime called gravitational waves.

While the universe may seem like it changes extremely slowly, over millions or even billions of years, its celestial occupants do sometimes produce dramatic changes on the order of days or even fractions of seconds. Galactic centers brighten as their central black holes eat material. Black holes siphon plasma from nearby stars. Stars explode. Neutron stars collide with black holes, neutron stars collide with neutron stars, and black holes merge with black holes. Even distant crashes of celestial objects can send powerful ripples that can be detected by space and ground-based telescopes and instruments. Many of these phenomena are unpredictable in terms of both where and when they might happen next.

NASA has two “watchdog” satellites with wide fields of view that send out alerts when they detect a sudden brightening of gamma rays: Fermi and Swift. Fermi’s Gamma-Ray Burst Monitor and Large Area Telescope, and Swift’s Burst Alert Telescope, are key instruments that might be the first to observe these events.

“When something impulsive happens, when something goes boom and explodes or something goes crunch and collapses, they trigger,” said Valerie Connaughton, who leads the high-energy astrophysics portfolio and the Time-Domain and Multimessenger Astronomy Initiative within the Astrophysics Division at NASA’s Headquarters in Washington.

Once scientists receive an alert on their computers and phones, they may be able to collaborate with other telescopes to follow up on the event. By using a variety of different space-based observatories and instruments to study these largely unpredictable flashes, scientists can piece together what, where, when, and why they observed a “blip” in the usual calm of space.

After comparing observations of the BOAT from numerous telescopes, scientists determined that this unusually bright burst came from a supernova and specifically, the core collapse of a massive star rotating rapidly. Later, with data from NASA’s NuSTAR mission, scientists found that the jet of material shooting out from the exploding star had a more complicated shape than they originally thought.

A giant star just exploded, and we get to study it and figure out what happened, and reverse engineer the pieces and put it back together,” Lesage said.

Time-domain astronomy lets us gets fundamental answers on the properties of the universe, of fundamental physics itself, and the origin of the elements.”

ERIC BURNS

ERIC BURNS

Astrophysicist, Louisiana State University

New Bright Signals

Just five months after the BOAT, scientists received an alert from Fermi about the second-brightest gamma-ray burst seen in the last 50 years. This newer signal, GRB 230307A, which happened in March 2023, joined the BOAT in the category of “long” gamma ray bursts, lasting 200 seconds, compared to 600 for the BOAT. Thanks to infrared data from NASA’s James Webb Space Telescope, scientists determined that GRB 230307A may have had a very different origin: the merger of two neutron stars about a billion light-years away from Earth. What’s more, Webb detected the rare element tellurium, suggesting that neutron star mergers create heavy elements like this.

This result still puzzles astronomers such as Eric Burns, a co-author of the GRB 230307A paper and member of the Fermi team at Louisiana State University. Merging neutron stars shouldn’t produce such long gamma-ray bursts, and current models of atomic physics do not entirely explain the mid-infrared wavelengths that Webb detected. He hopes Webb will help us learn more about these kinds of events in the next few years.

“Time-domain astronomy lets us gets fundamental answers on the properties of the universe, of fundamental physics itself, and the origin of the elements,” Burns said.

Bright galaxies and other light sources in various sizes and shapes are scattered across a black swath of space: small points, hazy elliptical-like smudges with halos, and spiral-shaped blobs. The objects vary in color: white, blue-white, yellow-white, and orange-red. Toward the center right is a blue-white spiral galaxy seen face-on that is larger than the other light sources in the image. The galaxy is labeled “former home galaxy.” Toward the upper left is a small red point, which has a white circle around it and is labeled “GRB 230307A kilonova.”
This image from NASA’s James Webb Space Telescope NIRCam (Near-Infrared Camera) instrument highlights Gamma-Ray Burst (GRB) 230307A and its associated kilonova, as well as its former home galaxy, among their local environment of other galaxies and foreground stars. The GRB likely was powered by the merger of two neutron stars. The neutron stars were kicked out of their home galaxy and traveled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.
NASA, ESA, CSA, STScI, A. Levan (Radboud University and University of Warwick)

A Multitude of Messengers

Cosmic “messengers” associated with fleeting cosmic blips also help scientists reconstruct their origins. The initial 2015 discovery of gravitational waves by LIGO, the Laser Interferometer Gravitational-Wave Observatory, showed that the universe could be observed in a brand new way, and began a new era of possibility for using multiple messengers to study sudden blips in the universe.

In 2017, scientists demonstrated that potential by combining gravitational wave observations with data from many different ground and space-based observatories to study a kilonova, or neutron star merger, called GW170817. Among the insights from the extensive study of this kilonova, Burns and colleagues used it to make the first precise measurement of the speed of gravity, “the last major confirmation of a prediction from Einstein,” he said.  

Today, the network of the U.S. NSF (National Science Foundation)-supported LIGO, Europe’s VIRGO, and Japan’s KAGRA looks out for gravitational wave events.

When this animation opens, there are concentric rings of pale blue the expand away and off the screen. At the center is a bright ball of light with two narrow cones of orange, fiery-looking material extend in opposing directions, tilted just to the right. During the first few seconds, there are magenta flashes of light that seem to be pushed along with the ends of the orange cones. The central ball expands into a puffy, electric blue cloud. The sequence represents the events that happened after two neutron stars merged, exploding in a gamma-ray burst.
This animation captures phenomena observed over the course of nine days following the neutron star merger known as GW170817, detected on Aug. 17, 2017. They include gravitational waves (pale arcs), a near-light-speed jet that produced gamma rays (magenta), expanding debris from a kilonova that produced ultraviolet (violet), optical and infrared (blue-white to red) emission, and, once the jet directed toward us expanded into our view from Earth, X-rays (blue).
NASA’s Goddard Space Flight Center/Conceptual Image Lab

Light is the only kind of “messenger” from the universe that has been detected for both the BOAT and the gamma ray burst that seems to have produced tellurium. An experiment near the South Pole called IceCube, supported by the NSF, looked for high-energy neutrinos coming from the same area of the sky as each event, but did not find any. However, the lack of neutrinos observed helps scientists constrain the possibilities for how these events unfolded.

“This multi-messenger approach is important, even when you don’t have a detection,” said Michela Negro, astrophysicist and assistant professor at Louisiana State University. “It really helps rule out some scenarios, on top of telling us something new when we have detections.”

A Bright Future for TDAMM

For Lesage, who is writing his dissertation about the BOAT, time-domain and multimessenger astronomy is an exciting area of study. The BOAT itself is still keeping him and other astronomers busy as they look at all of the processes revealed by the exceptionally bright light from this extreme event. But more transient events are sure to come, and will keep scientists on their toes as they chase after them with a wide variety of telescopes and instruments.

“That’s just transient events — look now or you’re going to miss it,” Lesage said. “Look as quickly as you possibly can.”

This animation shows what happened in the nine days after a neutron star merger detected in 2017. First, a pair of glowing blue neutron stars spiral quickly toward each other, merging with a bright flash. The merger creates gravitational waves (shown as pale arcs rippling outward), a near-light-speed jet that produced gamma rays (shown as brown cones and a rapidly traveling magenta glow erupting from the center of the collision), and a donut-shaped ring of expanding blue debris around the center of the explosion. A variety of colors represent the wavelengths of light produced by the kilonova, creating violet to blue-white to red bursts above and below the collision.
Doomed neutron stars whirl toward their demise in this illustration. Gravitational waves bleed away orbital energy, causing the stars to move closer together and merge. As they collide, some of the debris blasts away in particle jets moving at nearly the speed of light, producing a brief burst of gamma rays.
NASA’s Goddard Space Flight Center/Conceptual Image Lab

Further Reading: Telescopes on the Case

In the next few years NASA will be launching new “watcher” satellites to help look out for sudden transient events like these. They include several CubeSats, which are a class of miniaturized spacecraft built in standardized units of cubes around 4 inches (10 cm) on a side:

  • BurstCube, launching in March 2024, to monitor gamma-ray signals
  • BlackCat, launching in 2025, to detect X-ray light
  • Starburst, launching in 2027, to monitor gamma-ray signals

International partnerships also involve this kind of science:

  • ULTRASAT (Ultraviolet Transient Astronomy Satellite), a small satellite from the Israeli Space Agency and the the Weizmann Institute of Science, with a wide field of view specializing in ultraviolet light, has NASA contributions. Expected to launch in 2026.
  • ESA’s LISA (Laser Interferometer Space Antenna) mission, which would be the first time that gravitational waves could be detected from space, has NASA contributions. Expected to launch in the 2030s.

Additionally, NASA telescopes with other primary goals can help look out for these unusual events:

  • Psyche, on its way to the metal-rich asteroid Psyche, has a gamma-ray spectrometer that astronomers can use to detect gamma-ray bursts as the spacecraft cruises toward its destination over the next several years.
  • WISE, which mapped the sky at infrared wavelengths, found many new distant objects and cosmic phenomena.  The NEOWISE mission, which reuses the WISE telescope, surveys near-Earth space for potentially hazardous asteroids.
  • NASA’s Nancy Grace Roman Space Telescope, an infrared observatory that will illuminate longstanding mysteries of dark energy and discover thousands of exoplanets, is designed to have a wide view of the sky and will undoubtedly pick up on transient infrared signals. The observatory will do several surveys to look for these phenomena, and the mission will support many teams to study relevant topics ranging from variable stars, the birth of black holes and active galaxies. Roman is scheduled to launch by May 2027, and will also provide alerts about the changes in the sky it discovers. 
  • The NEO Surveyor mission will use infrared detectors to broaden the search for asteroids and comets that may pose a hazard to the Earth.  The images to be taken by NEO Surveyor also are expected to capture many more distant background objects.
Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Drones were a key part of testing new technology in support of a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies. From left are Tim Wallace and Michael Filicchia of the Desert Research Institute in Nevada; Derek Abramson, Justin Hall, and Alexander Jaffe of NASA’s Armstrong Flight Research Center in Edwards California; and Alana Dachtler of International Met Systems of Kentwood, Michigan.NASA/Jackie Shuman Advancements in NASA’s airborne technology have made it possible to gather localized wind data and assess its impacts on smoke and fire behavior. This information could improve wildland fire decision making and enable operational agencies to better allocate firefighters and resources. A small team from NASA’s Armstrong Flight Research Center in Edwards, California, is demonstrating how some of these technologies work.
      Two instruments from NASA’s Langley Research Center in Hampton, Virginia – a sensor gathering 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data – were installed on NASA Armstrong’s Alta X drone for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.
      “The objectives for the Alta X portion of the multi-agency prescribed burn include a technical demonstration for wildland fire practitioners, and data collection at various altitudes for the Alabama Forestry Commission operations,” said Jennifer Fowler, FireSense project manager. “Information gathered at the different altitudes is essential to monitor the variables for a prescribed burn.”
      Those variables include the mixing height, which is the extent or depth to which smoke will be dispersed, a metric Fowler said is difficult to predict. Humidity must also be above 30% for a prescribed burn. The technology to collect these measurements locally is not readily available in wildland fire operations, making the Alta X and its instruments key in the demonstration of prescribed burn technology.
      A drone from NASA’s Armstrong Flight Research Center, Edwards, California, flies with a sensor to gather 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data from NASA’s Langley Research Center in Hampton, Virginia. The drone and instruments supported a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.International Met Systems/Alana Dachtler In addition to the Alta X flights beginning March 25, NASA Armstrong’s B200 King Air will fly over actively burning fires at an altitude of about 6,500 feet. Sensors onboard other aircraft supporting the mission will fly at lower altitudes during the fire, and at higher altitudes before and after the fire for required data collection. The multi-agency mission will provide data to confirm and adjust the prescribed burn forecast model.
      Small, uncrewed aircraft system pilots from NASA Armstrong completed final preparations to travel to Alabama and set up for the research flights. The team – including Derek Abramson, chief engineer for the subscale flight research laboratory; Justin Hall, NASA Armstrong chief pilot of small, uncrewed aircraft systems; and Alexander Jaffe, a drone pilot – will set up, fly, observe airborne operations, all while keeping additional aircraft batteries charged. The launch and recovery of the Alta X is manual, the mission profile is flown autonomously to guarantee the same conditions for data collection.
      “The flight profile is vertical – straight up and straight back down from the surface to about 3,000 feet altitude,” Abramson said. “We will characterize the mixing height and changes in moisture, mapping out how they both change throughout the day in connection with the burn.”
      In August 2024, a team of NASA researchers used the NASA Langley Alta X and weather instruments in Missoula, Montana, for a FireSense project drone technology demonstration. These instruments were used to generate localized forecasting that provides precise and sustainable meteorological data to predict fire behavior and smoke impacts.
      Justin Link, left, pilot for small uncrewed aircraft systems, and Justin Hall, chief pilot for small uncrewed aircraft systems, install weather instruments on an Alta X drone at NASAs Armstrong Flight Research Center in Edwards, California. Members of the center’s Dale Reed Subscale Flight Research Laboratory used the Alta X to support the agency’s FireSense project in March 2025 for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama.NASA/Steve Freeman Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science B200 Drones & You Langley Research Center Science Mission Directorate Explore More
      5 min read NASA Langley’s Legacy of Landing
      Article 7 hours ago 4 min read NASA Makes Progress on Advanced Drone Safety Management System
      Article 23 hours ago 2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s Artemis II Mission Patch Just Launched
    • By NASA
      NASA astronaut Christopher Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas.Credit: NASA NASA astronaut Chris Williams will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 74 crew member.
      Williams will launch aboard the Roscosmos Soyuz MS-28 spacecraft in November, accompanied by Roscosmos cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Williams will conduct scientific investigations and technology demonstrations that help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Williams graduated with the 23rd astronaut class in 2024. He began training for his first space station flight assignment immediately after completing initial astronaut candidate training.
      Williams was born in New York City, and considers Potomac, Maryland, his hometown. He holds a bachelor’s degree in Physics from Stanford University in California and a doctorate in Physics from the Massachusetts Institute of Technology in Cambridge, where his research focused on astrophysics. Williams completed Medical Physics Residency training at Harvard Medical School in Boston. He was working as a clinical physicist and researcher at the Brigham and Women’s Hospital in Boston when he was selected as an astronaut.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Apr 03, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Eric Garza, técnico de ingeniería en el Taller de Fabricación Experimental del Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California, corta madera contrachapada a medida para las tablas del piso temporal del avión demostrador experimental X-66 el 26 de agosto de 2024.NASA/Steve Freeman Lee esta historia en español aquí.
      La NASA diseño unas tablas de piso temporales para el avión MD-90, que se utilizaran mientras el avión se transforma en el demostrador experimental X-66. Estas tablas de piso protegerán el piso original y agilizarán el proceso de modificación.  
      En apoyo al proyecto Demostrador de Vuelo Sostenible de la agencia, un pequeño equipo del Taller de Fabricación Experimental del Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California, construyó tablas de piso temporales para ahorrarle tiempo y recursos al proyecto. La retirada e instalación repetidas del piso original durante el proceso de modificación requería mucho tiempo. El uso de paneles temporales también garantiza la protección de las tablas del piso original y su aptitud para el vuelo cuando se finalicen las modificaciones y se vuelva a instalar el piso original. 
      “La tarea de crear las tablas de piso temporales para el MD-90 implica un proceso meticuloso dirigido a facilitar las modificaciones, manteniendo la seguridad y la eficacia. La necesidad de estas tablas de piso temporales surge del detallado procedimiento necesario para retirar y reinstalar los pisos originales del fabricante (OEM, por su acrónimo inglés),” explica Jason Nelson, jefe de fabricación experimental. Él es uno de los dos miembros del equipo de fabricación – un técnico de ingeniería y un inspector – que fabrica acerca de 50 tablas de piso temporales, con dimensiones que varían entre 20 pulgadas por 36 pulgadas y 42 pulgadas por 75 pulgadas. 
      Una máquina de madera corta agujeros precisos en madera contrachapada para las tablas del piso temporal el 26 de agosto de 2024, en el Taller de Fabricación Experimental del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California. El piso fue diseñado para el avión de demonstración experimental X-66. NASA/Steve Freeman Nelson continuó, “Como estas tablas OEM se quitarán y volverán a instalar varias veces para acomodar las modificaciones necesarias, las tablas temporales ahorrarán al equipo tiempo y recursos valiosos. También proporcionarán el mismo nivel de seguridad y resistencia que las tablas OEM, garantizando que el proceso se desarrolle sin problemas y sin comprometer la calidad.” 
      El diseño y la creación de prototipos del piso fue un proceso meticuloso, pero la solución temporal desempeña un papel crucial en la optimización del tiempo y los recursos en los esfuerzos de la NASA por avanzar en la seguridad y la eficiencia de los viajes aéreos. El proyecto Demostrador de Vuelo Sostenible de la agencia busca informar la próxima generación de aviones pasajeros de un solo pasillo, que son las aeronaves más comunes de aviación comercial de todo el mundo. La NASA se asoció con Boeing para desarrollar el avión de demostración experimental X-66.  El Taller de Fabricación Experimental de Armstrong de la NASA lleva a cabo modificaciones y trabajos de reparación en aeronaves, que van desde la creación de algo tan pequeño como un soporte de aluminio hasta la modificación de la estructura principal de las alas, las costillas del fuselaje, las superficies de control y otras tareas de apoyo a las misiones.
      Eric Garza, técnico de ingeniería en el Taller de Fabricación Experimental del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, observa cómo una máquina de madera corta agujeros para las tablas del piso temporal el 26 de agosto de 2024. El piso fue diseñado para el avión de demostración experimental X-66. NASA/Steve Freeman Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Aeronáutica NASA en español Explore More
      4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 3 weeks ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 4 months ago 10 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 4 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA Langley’s Legacy of Landing
      The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.
      Project Mercury: 1958
      Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.
      An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth. A group of study focused on the escape systems, ultimately becoming known as the launch abort system. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs. All of this research went on to inform the subsequent Gemini and Apollo programs.
      Apollo Program: 1962
      In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.
      Lunar Orbiter: 1966
      The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.
      Viking: 1976
      After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.
      HIAD: 2009 – Present
      Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.
      IRVE – 2009-2012
      Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.
      LOFTID – 2022
      The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.
      MEDLI 1 and 2: 2012 & 2020
      As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.
      Curiosity Rover
      Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.
      CLPS: 2023 – Present
      The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.
      NDL
      Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.
      SCALPSS
      Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years. 
      About the Author
      Angelique Herring

      Share
      Details
      Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      General Langley Research Center Explore More
      4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander
      Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar
      Article 2 years ago 7 min read Langley’s Contributions to Artemis
      Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work
      Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...