Jump to content

Deputy Discovery and Systems Health Technical Area Lead Dr. Rodney Martin


NASA

Recommended Posts

  • Publishers
Rodney Martin, wearing an olive-colored NASA jacket and a blue dress shirt underneath, smiles at the camera. He is standing in the foreground with Lake Chabot Park in the background.

“[In] everyone’s life, they have a pivotal moment when they ask the question, ‘What am I really doing? What am I here for?’ … I’m reminded of a credo that I came up [with] through the evolution of my engagement of a whole bunch of recreational pursuits [including being a marathoner, ultrarunner, and Ironman triathlete] … as well as my professional pursuits. It’s threefold, and here’s what it is:

“[First,] I’m here because I want to be able to challenge myself, to see how much I can squeeze out of me – whatever that is, whatever ‘me’ is. [For example,] I applied to the astronaut candidate program twice, but I failed to make it to the second round. I figured I’d give a go at throwing my hat in the ring! Like with [an earlier career experience of failing out of] the Navy Nuclear Power Training Program, failure in one domain just means that you have to pick yourself up, dust yourself off, and find a new direction – often pursuing stretch goals that are outside of your comfort zone.

“[Second,] I want to serve others. I want to find a way to be of use to others, whether it’s in a structured manner or unstructured manner, whether it’s volunteering or just being a civil servant. I really focus on this service aspect; I did become a supervisor about three years ago, and I really take that role seriously. I really have a service-based leadership philosophy. … That’s why I think [mentoring student interns] represented such a [career] highlight for me, because I felt like I was serving their needs. I was helping to really educate them and [provide] knowledge that I want to … transfer to them, to really inspire that next generation of folks.

“… And the third – which I think NASA fits beautifully – is, ‘How do I build the future? How do I help build the future?’

“So again, it’s challenge, service, and building the future. If I don’t do anything else in my entire life except for those three things, I’m at least getting something right. I might be getting everything else entirely wrong, but I can at least work toward those three things.”

— Dr. Rodney Martin, Deputy Discovery and Systems Health Technical Area Lead, NASA’s Ames Research Center

Image Credit: NASA / Brandon Torres
Interviewer: NASA / Michelle Zajac

Check out some of our other Faces of NASA.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Suicide prevention is a top military priority every day, but takes on even greater focus each September, designated since 2008 as National Suicide Prevention month.

      View the full article
    • By NASA
      Joseph Ladner stands at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where he leads a team managing the budgets to fund the nation’s premier propulsion test site. NASA/Danny Nowlin Joseph Ladner’s experiences working at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, motivate him to “pay it forward” so more people can be a part of something great.
      “It is exciting to be at a place like NASA Stennis that continues to reinvent itself to stay relevant,” Ladner said. “You can do just about anything you can imagine with a workforce committed to its success.”
      The Gulfport, Mississippi, resident is the lead budget analyst in the NASA Stennis Office of the Chief Financial Officer. His team manages budgets that fund the nation’s premier propulsion test site.
      Ladner can point to three pivotal moments propelling him to a career with NASA. The first came by attending ASTRO CAMP at NASA Stennis every summer as a child. The thrilling experiences of launching paper rockets and conducting science experiments left him with the question, “How do I get to work there?”
      The answer came into focus years later. Much like launching paper rockets, Ladner’s career started at ground level before reaching higher heights.
      He started on the lowest end of the General Schedule pay scale as a GS-1 clerk for the Naval Oceanographic Office, located at NASA Stennis, while attending Mississippi Gulf Coast Community College.
      A second pivotal moment also came during this time. The Saucier, Mississippi, native credits mentor Pamela Stenum for putting him on a career path in procurement so he could use the math and analytical skills that came natural to him.
      The clerk role, expected to be only for one semester, continued through Ladner’s studies at The University of Southern Mississippi, where he earned a bachelor’s degree in Business Administration.
      “I literally came in from the bottom, and someone saw potential in me,” Ladner said. “She realized I was a hard worker and that I cared about the product I was putting out.”
      The third, and most profound, moment leading Ladner to a NASA career happened when the space shuttle Columbia orbiter suffered a catastrophic failure during return to Earth.
      “I will never forget standing in the crowd that morning waiting for the launch of Columbia (in 2003) and hearing the commander over the loudspeakers thank everyone for the efforts to get them to this point and saying farewell to his family,” Ladner said. “No one knew it would ultimately be the crew’s last farewell. That tragic incident left me with a greater sense that there are many opportunities, but life is short. That thought and NASA’s return to flight mission left me with a desire to be part of NASA.”
      Ladner started his career with the agency two years later and has worked inspired ever since. His role as lead budget analyst contributes to the Artemis campaign that will establish the foundation for long-term scientific exploration of the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      His job currently involves navigating challenges of increased costs and reduced budgets. From Ladner’s perspective, the challenges present opportunities for innovation and new ideas. 
      “Knowing my work is part of a greater cause impacting the Artemis Generation that could make a difference to society is the best thing about working at NASA Stennis,” Ladner said. “There is some awe and wonder about working at NASA, so it is neat to say you are a part of that.”
      Learn more about the people who work at NASA Stennis View the full article
    • By NASA
      On Aug. 30, 1984, space shuttle Discovery lifted off on the STS-41D mission, joining NASA’s fleet as the third space qualified orbiter. The newest shuttle incorporated newer technologies making it significantly lighter than its two predecessors. Discovery lofted the heaviest payload up to that time in shuttle history. The six-person crew included five NASA astronauts and the first commercial payload specialist. During the six-day mission, the crew deployed a then-record three commercial satellites, tested an experimental solar array, and ran a commercial biotechnology experiment. The astronauts recorded many of the activities using a large format film camera, the scenes later incorporated into a motion picture for public engagement. The mission marked the first of Discovery’s 39 trips to space, the most of any orbiter.

      Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.
      Space shuttle Discovery, the third space-qualified orbiter in NASA’s fleet and named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters. In addition, through the use of more advanced materials, the new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger. Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB), where they mounted it atop a Shuttle Carrier Aircraft (SCA), a modified Boeing 747, for the transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida. Discovery arrived at KSC on Nov. 9 following a two-day stopover at Vandenberg Air Force, now Space Force Base, in California.

      Left: STS-41D crew patch. Middle: Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik. Right: Payloads installed in Discovery’s payload bay for the STS-41D mission include OAST-1, top, SBS-4, Telstar 3C, and Leasat-2.
      To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts and making their first spaceflights. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array. Following the June 1984 launch abort, NASA canceled the STS-41F mission, combining its payloads with STS-41D’s, resulting in three communications satellites – SBS-4 for Small Business Systems, Telstar 3C for AT&T, and Leasat 2 (Syncom IV-2) for the U.S. Navy – launching on the flight. The combined cargo weighed 41,184 pounds, the heaviest of the shuttle program up to that time. A large format IMAX® camera, making its second trip into space aboard the shuttle, flew in the middeck to film scenes inside the orbiter and out the windows.

      Left: First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Right: The June 26 launch abort.
      The day after its arrival at KSC, workers towed Discovery to the Orbiter Processing Facility (OPF) to begin preparing it for its first space flight. They towed it to the Vehicle Assembly Building (VAB) on May 12, 1984, for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A a week later. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of Discovery’s main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25. The failure of the shuttle’s backup General Purpose Computer (GPC) delayed the launch by one day. The June 26 launch attempt ended just four seconds before liftoff, after two of the main engines had already ignited. The GPC detected that the third engine had not started and shut all three down. It marked the first time a human spaceflight launch experienced an abort after the start of its engines since Gemini VI in October 1965. The abort necessitated a rollback to the VAB on July 14 where workers demated Discovery from the ET and SRBs. Engineers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt. The six-person crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch, on Aug. 15. A software issue delayed the first launch attempt on Aug. 29 by one day.

      Left: The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test. Right: Liftoff of Discovery on the STS-41D mission.
      Finally, on Aug. 30, 1984, Discovery roared off its launch pad on a pillar of flame and within 8 and a half minutes entered orbit around the Earth. The crew got down to work and on the first day Mullane and Hawley deployed the SBS-4 satellite. On the second day in space, they deployed Leasat, the first satellite designed specifically to be launched from the shuttle. On the third day, they deployed the Telstar satellite, completing the satellite delivery objectives of the mission. Resnik deployed the OAST-1 solar array to 70% of its length to conduct dynamic tests on the structure. On the fourth day, she deployed the solar array to its full length and successfully retracted it, completing all objectives for that experiment.

      The deployment of the SBS-4, left, Leasat-2, and Telstar 3C satellites during STS-41D.
      Walker remained busy with the CFES, operating the unit for about 100 hours, and although the experiment experienced two unexpected shutdowns, he processed about 85% of the planned samples. Hartsfield and Coats exposed two magazines and six rolls of IMAX® film, recording OAST-1 and satellite deployments as well as in-cabin crew activities. Clips from the mission appear in the 1985 IMAX® film “The Dream is Alive.” On the mission’s fifth day, concern arose over the formation of ice on the orbiter’s waste dump nozzle. The next day, Hartsfield used the shuttle’s robotic arm to dislodge the large chunk of ice.

      Left: Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System. Middle: Henry “Hank” W. Hartsfield loading film into the IMAX® camera. Right: The OAST-1 Solar Array Experiment extended from Discovery’s payload bay.
      On Sep. 5, the astronauts closed Discovery’s payload bay doors in preparation for reentry. They fired the shuttle’s Orbital Maneuvering System engines to slow their velocity and begin their descent back to Earth. Hartsfield guided Discovery to a smooth landing at Edwards AFB in California, completing a flight of 6 days and 56 minutes. The crew had traveled 2.5 million miles and orbited the Earth 97 times.

      Left: The STS-41D crew pose in Discovery’s middeck. Right: Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission. 
      By Sept. 10, workers had returned Discovery to KSC to prepare it for its next mission, STS-51A, in November 1984. During its lifetime, Discovery flew a fleet leading 39 missions, making its final trip to space in February 2011. It flew both return to flight missions, STS-26 in 1988 and STS-114 in 2005. It launched the Hubble Space Telescope in 1990 and flew two of the missions to service the facility. Discovery flew two mission to Mir, docking once. It completed the first docking to the International Space Station in 1999 and flew a total of 13 assembly and resupply missions to the orbiting lab. By its last mission, Discovery had traveled 149 million miles, completed 5,830 orbits of the Earth, and spent a cumulative 365 days in space in the span of 27 years. The public can view Discovery on display at the National Air and Space Museum’s Stephen F. Udvar-Hazy Center in Chantilly, Virginia.
      Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41D mission.
      Explore More
      6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 5 days ago 11 min read 15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew
      Article 6 days ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 1 week ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again
      This image shows the workspace in front of NASA’s Mars rover Curiosity, taken by the Left Navigation Camera aboard the rover on sol 4287 — Martian day 4,287 of the Mars Science Laboratory mission — on Aug. 28, 2024, at 02:23:27 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Aug. 28 2024
      We are back … almost, anyways. Today’s parking location is very close to where we parked on sol 4253, and in an area near one of the previous contact science targets “Discovery Pinnacle.” You can read in this blog post that most of the team, this blogger included, was in Pasadena for our team meeting when we were last in this area. That was July and Curiosity was about to turn 12 on Mars. Coming back is a very rare occasion and is always planned carefully. Once or twice during the last 12 years it happened because we saw something “in the rear mirror.” One of the examples is the target “Old Soaker,” where we spotted mud cracks in the images from a previous parking position, and promptly went back because this was such an important discovery. At other times it was carefully planned, such as the “walkabout” at “Pink Cliffs,” which you can watch in this video from as long back as Earth year 2015. In the past few planning cycles, it’s more of the latter as we made our way from Discovery Pinnacle, where we were on sol 4253, “Just passing through” “Russell Pass” and arriving at “Kings Canyon,” our drill location, which we reached on sol 4257. You can follow all the action of the drilling at Kings Canyon on the blogs. It took a while — it always does — because it’s an activity with many steps and investigations to complete. We actually celebrated Curiosity’s 12th birthday at Kings Canyon! We departed on sol 4283, came back via “Cathedral Peak,” and are now near the Discovery Pinnacle location again. After that little walkabout through the history of (some) of Curiosity’s walkabouts, especially the very last one, let’s look at today’s plan.
      It is a pretty normal two-sol plan, with a one-hour science block before we drive away from this location. We were greeted by a nicely flat surface, and the engineers informed us that we have all six wheels firmly on flat and stable ground. That’s always a relief, because only then can we use the arm. That nice piece of flat rock Curiosity is so firmly parked on became our science target …well, mostly. Some of the little pebbles on the surface attracted our attention, too. The very eagle-eyed can spot a small white spot in the image above. It’s right between the arm and the rover itself, about where the C is written. That’s a rock that we likely broke up with our wheel and that has a very white part to it. We called it “Thousand Island Lake,” and will image it with MAHLI. APXS is investigating a target called “Eichorn Pinnacle,” squarely on the big flat area. LIBS is also making the most of the large target underneath and in front of us, investigating the target “Nine Lakes Basin.”
      In recent blogs you will have read about the dust-storm watch making the atmospheric investigations even more important, so we don’t miss any changes. We are looking for dust devils, atmospheric opacity, and are of course monitoring the weather throughout the plan.
      Our drive will hopefully — if Mars agrees — be a long one, and we will also plan an activity that we call MARDI sidewalk. That’s when we take very frequent pictures with the MARDI instrument while driving. This results in a long strip of images nicely showing the nature of the terrain the rover has driven over. This is in addition to the MARDI single frame we are taking every time the rover stops. I often get the question, why are we taking an image just downwards whenever the rover stops? Well, humans are easy to bias toward the outliers, toward the things that look special, and of course the Curiosity team is no exception. For some things this is great, because it allows for the discoveries of new things. But it doesn’t provide an unbiased overview. That’s what MARDI does: It always points down and reliably records the terrain under the rover. We don’t have to do anything but put the commands for that one image into our plan after the drive — something that’s pretty routine after 12 years now!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Aug 29, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4287-4288: Back on the Road


      Article


      1 day ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      2 days ago
      4 min read Sols 4284–4286: Environmental Science Extravaganza


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      History was made on Aug. 16, as six Space Force students out of basic military training became the first Guardians to graduate technical training at the U.S. Air Force Honor Guard at Joint Base Anacostia-Bolling.

      View the full article
  • Check out these Videos

×
×
  • Create New...