Jump to content

Deputy Discovery and Systems Health Technical Area Lead Dr. Rodney Martin


Recommended Posts

  • Publishers
Posted
Rodney Martin, wearing an olive-colored NASA jacket and a blue dress shirt underneath, smiles at the camera. He is standing in the foreground with Lake Chabot Park in the background.

“[In] everyone’s life, they have a pivotal moment when they ask the question, ‘What am I really doing? What am I here for?’ … I’m reminded of a credo that I came up [with] through the evolution of my engagement of a whole bunch of recreational pursuits [including being a marathoner, ultrarunner, and Ironman triathlete] … as well as my professional pursuits. It’s threefold, and here’s what it is:

“[First,] I’m here because I want to be able to challenge myself, to see how much I can squeeze out of me – whatever that is, whatever ‘me’ is. [For example,] I applied to the astronaut candidate program twice, but I failed to make it to the second round. I figured I’d give a go at throwing my hat in the ring! Like with [an earlier career experience of failing out of] the Navy Nuclear Power Training Program, failure in one domain just means that you have to pick yourself up, dust yourself off, and find a new direction – often pursuing stretch goals that are outside of your comfort zone.

“[Second,] I want to serve others. I want to find a way to be of use to others, whether it’s in a structured manner or unstructured manner, whether it’s volunteering or just being a civil servant. I really focus on this service aspect; I did become a supervisor about three years ago, and I really take that role seriously. I really have a service-based leadership philosophy. … That’s why I think [mentoring student interns] represented such a [career] highlight for me, because I felt like I was serving their needs. I was helping to really educate them and [provide] knowledge that I want to … transfer to them, to really inspire that next generation of folks.

“… And the third – which I think NASA fits beautifully – is, ‘How do I build the future? How do I help build the future?’

“So again, it’s challenge, service, and building the future. If I don’t do anything else in my entire life except for those three things, I’m at least getting something right. I might be getting everything else entirely wrong, but I can at least work toward those three things.”

— Dr. Rodney Martin, Deputy Discovery and Systems Health Technical Area Lead, NASA’s Ames Research Center

Image Credit: NASA / Brandon Torres
Interviewer: NASA / Michelle Zajac

Check out some of our other Faces of NASA.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The TRICARE Online Patient Portal will no longer be available April 1.To retain health records, download them from the TOL Patient Portal before April 1.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A NASA researcher and innovation architect from the Convergent Aeronautics Solutions project Discovery team collaborating at a whiteboard during a visit to Chapel Hill, N.C. on Aug. 13, 2024.NASA / Ariella Knight Convergent Aeronautics Solutions (CAS) Discovery identifies problems worth solving for the benefit of all.
      We formulate “convergent” problems—across multiple disciplines and sectors—and build footholds toward potentially transformative opportunities in aeronautics. As aeronautics rapidly advances, it is increasingly intersecting with other sectors like energy, healthcare, emergency response, economic resilience, the space economy, and more.
      CAS Discovery builds new innovation tools and methods, a workforce adept at innovation methods, and transdisciplinary teams of researchers within and beyond NASA that conduct regular “Discovery sprints”—expeditions into cross-sector topic areas that could beneficially transform aeronautics and humanity.
      WHAT is Discovery?
      Participatory
      It is difficult to understand and effectively address stakeholders’ needs & capabilities without engaging them. Discovery, in consultation with key NASA offices and other government agencies, has honed mechanisms to lawfully and respectfully engage and invite participation from stakeholders, communities, industry, NGOs and government to collaboratively formulate complex societal challenges tied to aviation. 
      Convergent
      Typical organizational structures limit convergence across knowledge boundaries. CAS Discovery is intentionally cross-sector and transdisciplinary because the most impactful ideas often lie at the intersection of boundaries, the borderlands where multiple disciplines and communities come together. We work to emerge multi-sector, system-of-systems challenges that integrate political, economic, social, technological, environmental, legal and ethical trends, needs, and capabilities.
      Future-Focused
      Organizations have a tendency of being driven by short-term thinking and relatively short time horizons. CAS Discovery uses strategic foresight methods to examine 20 to 50-year time horizons, systematically ingesting and synthesizing signals and trends from aero and non-aero sources to envision a variety of scenarios to uncover opportunities for the future of aeronautics.
      Ecosystemic
      We study the ecosystems that are part of aeronautics and aerospace. This helps in broadening consideration of impacts while practicing foresight. It enhances our awareness of the environment and gives stakeholders the ability to see ripple effects across technologies, economies, communities, etc. We seek to benefit the wellness of the entire ecosystem while also benefiting the constituents.
      A group of NASA researchers and leaders from the Convergent Aeronautics Solutions project Discovery team at the agency’s Glenn Research Center in Cleveland, on April 30, 2024.NASA / Ricaurte Chock WHO is Discovery?
      NASA Researchers
      They are the engine that propels CAS Discovery. Our cross-center Discovery sprint and foresight teams are composed of researchers from NASA’s Ames Research Center and Armstrong Flight Research Center in California, Glenn Research Center in Cleveland, and Langley Research Center in Virginia.
      Researchers from Outside of NASA
      They collaborate with us as subject matter experts or Discovery sprint team members to contribute their backgrounds in fields less common within NASA, such as energy, economics, anthropology, and other areas. This collaboration happens through many mechanisms, such as freelancing, crowdsourcing, interviews, webinars, and podcasts.
      Stakeholders
      They are engaged in various ways and to different degrees, often co-envisioning potential futures, co-formulating problems, and co-designing solutions.
      Innovation Architects
      They are the glue that holds CAS Discovery together and the anti-glue that keeps our teams from getting stuck. They come from a wide range of experience, each bringing deep expertise in leading transdisciplinary teams and stakeholders through processes and methods from strategic foresight, complex systems design, human-centered design, and more.
      CAS Center Integration Leads (CILs)
      They work with NASA line management at each Aeronautics center to bring NASA researchers and potential new PIs into CAS. CILs also host annual Wicked Wild idea pitch events to bring new problem areas and solution ideas into CAS Discovery and early Execution phases.
      Ames Research Center CIL: Ty Huang Armstrong Flight Research Center CIL: Matt Kearns  Glenn Research Center CIL: Jeffrey Chin Langley Research Center CIL: Devin Pugh-Thomas CAS Discovery Leads
      They oversee Discovery sprint and strategic foresight teams, topics, and processes; new tools and continuous improvement experiments; and the overall health of the CAS innovation front-end pipeline and related strategic outputs.
      Discovery Lead: Eric Reynolds Brubaker, Langley Research Center Foresight Lead: Vikram Shyam, Glenn Research Center Sample Discovery Publications
      COMING SOON: Links to Technical Memorandums and conference papers.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Concludes Wind Study
      Article 2 years ago 3 min read NASA Armstrong Supports Wind Study
      Article 2 years ago 4 min read NASA Interns Help Identify Aviation Solutions to Health Care Challenges
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Convergent Aeronautics Solutions
      Science Missions
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 21, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.gov Related Terms
      Convergent Aeronautics Solutions View the full article
    • By NASA
      Students explore the Manufacturing Facility at NASA’s Glenn Research Center in Cleveland during Career Technical Education Day on March 11.Credit: NASA/Jef Janis NASA’s Glenn Research Center in Cleveland welcomed more than 150 students and educators to showcase technical careers, inspire the next generation, and ignite a passion for learning during a Career Technical Education program March 11.
      “Here at Glenn Research Center, we love what we do, and we love to share what we do,” said Dawn Schaible, Glenn’s deputy director, during opening remarks at the event. “I hope you find today educational and inspiring, and let your passion and hard work drive you to places you can’t even imagine. We have space for every profession at NASA.”
      Dawn Schaible, NASA Glenn Research Center’s deputy director, welcomes more than 150 students to Career Technical Education Day on March 11. Students toured the Manufacturing Facility and the Flight Research Building while talking to NASA experts about technical careers within the agency.Credit: NASA/Jef Janis The event, hosted by NASA’s Next Gen STEM Project in collaboration with Glenn’s Office of STEM Engagement (OSTEM), gave students a behind-the-scenes look at the technical careers that make NASA’s missions possible.
      Glenn’s Manufacturing Facility opened its doors to demonstrate how technical careers like machining and fabrication enable NASA to take an idea and turn it into a reality. Students explored Glenn’s metal fabrication, instrumentation, wiring, machining, and 3D printing capabilities while gleaning advice from experts in the field.
      Students also toured Glenn’s Flight Research Building where they spoke with the center’s flight crew, learned how the agency is using the Pilatus PC-12 aircraft to support a variety of aeronautics research missions, and discussed what a career in aviation looks like.

      A student experiences virtual reality during Career Technical Education Day at NASA’s Glenn Research Center in Cleveland on March 11. The Graphics and Visualization Lab spoke with students about how 3D demonstrations help NASA find innovative solutions to real-world challenges.Credit: NASA/Jef Janis “In OSTEM, our role is connecting students, just like you, with real opportunities at NASA,” said Clarence Jones, OSTEM program specialist, while addressing the group. “We want you to be able to see yourselves in these roles and possibly be part of our workforce someday.”
      Next Gen STEM and OSTEM host many events like Career Technical Education Day. The next opportunity, “Spinoffs in Sports,” is scheduled for April 10. Participants will learn about NASA technologies that are being used the sporting world. Registration for this virtual career connection ends April 4. 
      NASA also offers In-Flight STEM Downlinks for students and educators to interact with astronauts aboard the International Space Station during Q&A sessions. The Expedition 74 proposal window is open now through April 29.
      Explore More
      3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition 
      Article 6 days ago 1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight 
      Article 1 week ago 2 min read NASA Releases its Spinoff 2025 Publication 
      Article 1 week ago View the full article
    • By NASA
      Depending on where you stand at the lunar South Pole, you may experience temperatures of 130°F (54°C) during sunlit periods, or as low as -334°F (-203°C) in a permanently shadowed region. Keeping crews comfortable and tools and vehicles operational in such extreme temperatures is a key challenge for engineers at Johnson Space Center working on elements of NASA’s Artemis campaign.

      Abigail Howard is part of that innovative team. Since joining Johnson in 2019, she has conducted thermal analysis for projects including the lunar terrain vehicle (LTV), pressurized rover, VIPER (Volatiles Investigating Polar Exploration Rover), and Gateway – humanity’s first lunar space station. Her work explores how different materials and components respond to different temperatures and how to manage heat transfer in products and structures.

      She currently serves as the passive thermal system manager for the Extravehicular Activity and Human Surface Mobility Program, leading a small team of thermal analysts. Together, they provide expertise on passive thermal design, hardware, modeling, and testing to vendors and international partners that are developing rovers and tools for human exploration of the lunar surface.

      Abigail Howard posing in front of a mockup of VIPER (Volatiles Investigating Polar Exploration Rover), which she worked on as a thermal analyst for three years. Image courtesy of Abigail Howard Howard said her sudden shift from thermal analysis engineer to thermal system manager involved a steep learning curve. “Every day was like drinking through a firehose. I had to learn very quickly about systems engineering tasks, project phases, and leadership, while also learning about many new thermal approaches and designs so that I could provide good insight to project leadership and program vendors and partners,” she said. “Having a good group of senior engineers and friends to lean on and building up my team helped me get through it, but the single most important thing was not giving up. It gets easier and persistence pays off!”

      Abigail Howard (left) and Brittany Spivey (right) after presenting their poster at the 2022 International Symposium for Materials in the Space Environment in Leiden, the Netherlands. Image courtesy of Abigail Howard Howard feels fortunate to have worked on many interesting projects at NASA and presented her work at several conferences. Top achievements include watching her first NASA project launch successfully on Artemis I and supporting the LTV Source Evaluation Board as the thermal representative. “Something I’m really proud of is obtaining funding for and managing a test that looked at thermal performance of dust mitigation for spacecraft radiators,” she added.

      Abigail Howard removes lunar dust simulant from a tray holding radiator test coupons during a test to evaluate thermal performance of radiators with integrated Electrodynamic Dust Shield for dust mitigation. Image courtesy of Abigail Howard She believes interesting and challenging work is important but says the biggest determinant to professional success and satisfaction is your team and your team lead. “Having a really great team and team lead on Gateway thermal taught me the kind of leader and teammate I want to be,” she said.

      Howard encourages fellow members of the Artemis Generation to not let imposter syndrome get in their way. “Focus on the evidence of your abilities and remember that no one is in this alone,” she said. “It’s okay to ask for help.”

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The space shuttle Endeavour is seen on launch pad 39a as a storm passes by prior to the rollback of the Rotating Service Structure (RSS), Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. During the 14-day mission, Endeavour and the STS-134 crew will deliver the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. Launch is targeted for Friday, April 29 at 3:47 p.m. EDT.NASA It is important to protect humans from unintended electrical current flow during spaceflight. The thresholds for contact electrical shock are well established, and standards and requirements exist that minimize the probability of contact electrical shock. Current thresholds were chosen (vs. voltage thresholds) because body impedance varies depending on conditions such as wet/dry, AC/DC, voltage level, large/small contact area, but current thresholds and physiological effects do not change. By addressing electrical thresholds, engineering teams are able to provide the appropriate hazard controls, usually through additional isolation (beyond the body’s impedance), current limiters, and/or modifying the voltage levels. Risk assessment determined that the probability of an event was extremely low, and the most serious consequence is expected to be involuntary muscle contraction.
      Lightning strikes the Launch Pad 39B protection system as preparations for launch of NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard continue, Saturday, Aug. 27, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for no earlier than Aug. 29 at 8:33 a.m. ET. Photo Credit: (NASA/Bill Ingalls) Directed Acyclic Graph Files
      + DAG File Information (HSRB Home Page)
      + Electrical Shock Risk DAG and Narrative (PDF)
      + Electrical Shock Risk DAG Code (TXT)
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Risk of Toxic Substance Exposure
      Article 15 mins ago 1 min read Risk of Urinary Retention
      Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
      Article 14 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...