Jump to content

55 Years Ago: Six Months Until the Moon Landing


NASA

Recommended Posts

  • Publishers

The new year of 1969 dawned with optimism that NASA would meet President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth. The previous year saw four Apollo missions, two uncrewed and two carrying three astronauts each, test different components of the lunar landing architecture, culminating with Apollo 8’s December flight around the Moon. Challenges remaining for the new year included testing the Lunar Module (LM) with a crew, first in Earth orbit, and then in lunar orbit, a flight that served as a dress rehearsal for the Moon landing that could take place on the following mission. With flights occurring every two months, engineers at NASA’s Kennedy Space Center (KSC) in Florida processed three spacecraft and launch vehicles in parallel.

Recovering from the fire

The Apollo 1 crew of Virgil I. “Gus” Grissom, left, Edward H. White, and Roger B. Chaffee Liftoff of the first Saturn V on the Apollo 4 mission The Lunar Module for the Apollo 5 mission Recovery of the Apollo 6 Command Module
Left: The Apollo 1 crew of Virgil I. “Gus” Grissom, left, Edward H. White, and Roger B. Chaffee. Middle left: Liftoff of the first Saturn V on the Apollo 4 mission. Middle right: The Lunar Module for the Apollo 5 mission. Right: Recovery of the Apollo 6 Command Module.

The years 1967 and 1968 proved turbulent for the world. For NASA, the focus remained on recovering from the tragic Apollo 1 fire in time to meet President Kennedy’s fast approaching end of the decade deadline. The fire resulted in a thorough redesign of the Command Module (CM) to reduce flammability risks and to include an easy to open hatch. Engineers also removed flammable materials from the Lunar Module (LM). In November 1967, the first flight of the Saturn V carried Apollo 4 on a nine-hour uncrewed mission to test the CM’s heat shield. Apollo 5 in January 1968 completed an uncrewed test of the LM so successful that NASA decided to cancel a second test. Although fraught with problems, the April 1968 flight of Apollo 6 tested the CM heat shield once again. Managers believed that engineers could solve the problems encountered during this mission and declared that the next Saturn V would carry a crew.

Apollo 7 and 8

Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham on the recovery ship USS Essex following their 11-day mission The famous Earthrise photograph from Apollo 8
Left: Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham on the recovery ship USS Essex following their 11-day mission. Right: The famous Earthrise photograph from Apollo 8.

By October 1968, thorough ground testing of the Apollo spacecraft enabled the first crewed mission since the fire. Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham successfully completed the 11-day test flight, achieving all mission objectives. In August, with LM development running behind schedule, senior NASA managers began discussions of sending Apollo 8 on a circumlunar flight, pending the outcome of Apollo 7. With that hurdle successfully cleared, astronauts Frank Borman, James A. Lovell, and William A. Anders orbited the Moon 10 times during Christmas 1968, taking a giant leap toward achieving the Moon landing.

At the White House, Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders present a copy of the Earthrise photograph to President Lyndon B. Johnson Accompanied by Vice President Hubert H. Humphrey, Borman, Lovell, and Anders take a motorcade from the White House to the Capitol Borman, left, Lovell, and Anders address a joint meeting of Congress
Left: At the White House, Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders present a copy of the Earthrise photograph to President Lyndon B. Johnson. Middle: Accompanied by Vice President Hubert H. Humphrey, Borman, Lovell, and Anders take a motorcade from the White House to the Capitol. Right: Borman, left, Lovell, and Anders address a joint meeting of Congress.

With their space missions completed, the Apollo 7 and 8 crews remained busy with events celebrating their successes. On Jan. 3, 1969, TIME magazine named Apollo 8 astronauts Borman, Lovell, and Anders their Men of the Year for 1968. Kicking off a whirlwind of events, on Jan. 9, outgoing President Lyndon B. Johnson welcomed them to the White House, where he presented them with NASA Distinguished Service Medals. They in turn presented him with a copy of the famous Earthrise photograph. Accompanied by Vice President Hubert H. Humphrey, Borman, Lovell, and Anders rode in a motorcade down Pennsylvania Avenue to the Capitol where the astronauts addressed a joint meeting of Congress. From there, they proceeded to the State Department for a press conference, their day ending with a dinner in their honor at the Smithsonian Institution.

Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders wave to the crowds assembled along their parade route in New York City Borman, Lovell, and Anders address a crowd at Newark airport In Miami’s Orange Bowl Lovell, left, Borman, and Anders lead the fans in the Pledge of Allegiance at Super Bowl III
Left: Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders wave to the crowds assembled along their parade route in New York City. Middle: Borman, Lovell, and Anders address a crowd at Newark airport. Right: In Miami’s Orange Bowl Lovell, left, Borman, and Anders lead the fans in the Pledge of Allegiance at Super Bowl III.

On Jan. 10, New York City held a tickertape parade for Borman, Lovell, and Anders. Mayor John V. Lindsay presented them with Medals of the City of New York, after which they attended a luncheon at Lincoln Center, a reception at the United Nations, and dinner at the Waldorf-Astoria Hotel. The next day, in 15-degree weather, they spoke to a crowd of about 1,500 people at Newark Airport before boarding a plane for much warmer Miami, where on Jan. 12 they attended Super Bowl III, and led the Orange Bowl crowd in reciting the Pledge of Allegiance.

In Houston, Apollo 8 astronauts William A. Anders, left, Frank Borman, and James A. Lovell present an Earthrise photograph and flags of Texas to Governor John B. Connally, far right, and Mayor Louie Welch, hidden behind the photograph Borman and his family in the parade through downtown Houston, with Lovell and Anders and their families following behind Lovell, Borman, and Anders wave to the crowds in the parade in Chicago
Left: In Houston, Apollo 8 astronauts William A. Anders, left, Frank Borman, and James A. Lovell present an Earthrise photograph and flags of Texas to Governor John B. Connally, far right, and Mayor Louie Welch, hidden behind the photograph. Middle: Borman and his family in the parade through downtown Houston, with Lovell and Anders and their families following behind. Right: Lovell, Borman, and Anders wave to the crowds in the parade in Chicago.

A crowd estimated at about 250,000 welcomed Borman, Lovell, and Anders home to Houston on Jan. 13. In a ceremony outside the Albert Thomas Convention Center, Mayor Louie Welch presented them with bronze medals for heroism, and the astronauts presented Welch and Texas Governor John B. Connally with plaques bearing Texas flags they had flown to the Moon as well as a framed copy of the Earthrise photograph. The astronauts took part in the largest parade in the city’s history. The next day, the city of Chicago welcomed Borman, Lovell, and Anders. An estimated 1.5 million people cheered them on their parade route to a reception where they received honors from city council.

The Apollo 7 Command Module and a Lunar Module mockup on a float in President Richard M. Nixon’s inauguration parade; Apollo 7 astronauts Walter M. Schirra, R. Walter Cunningham, and Donn F. Eisele preceded the float in an open-air limousine Apollo 8 astronauts Frank Borman, left, James A. Lovell, and William A. Anders with President Nixon at the White House
Left: The Apollo 7 Command Module and a Lunar Module mockup on a float in President Richard M. Nixon’s inauguration parade; Apollo 7 astronauts Walter M. Schirra, R. Walter Cunningham, and Donn F. Eisele preceded the float in an open-air limousine. Image credit: courtesy Richard Nixon Library. Right: Apollo 8 astronauts Frank Borman, left, James A. Lovell, and William A. Anders with President Nixon at the White House.

On Jan. 20, Apollo 7 astronauts Schirra, Eisele, and Cunningham rode in President Richard M. Nixon’s inauguration parade in Washington, D.C. Their spacecraft and a LM mockup rode on a float behind them. Ten days later, the new President invited Apollo 8 astronauts Borman, Lovell, and Anders to the White House where he announced that Borman and his family would embark on an 18-day goodwill tour of eight European nations, starting on Feb. 2.

Apollo 9

The LM remained the one component of the lunar landing architecture not yet tested by astronauts in space. That task fell to James A. McDivitt, David R. Scott, and Russell L. Schweickart, the crew of Apollo 9. They and their backups Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean spent many hours in the LM simulators and training for the spacewalk component of the mission.

In preparation for the Apollo 9 spacewalk, astronaut Russell L. Schweickart tests the Portable Life Support System backpack in an altitude chamber at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston Schweickart trains for his spacewalk in MSC’s Water Immersion Facility Apollo 9 backup astronauts Richard F. Gordon, left, and Alan L. Bean train for the spacewalk in the KC-135 zero-gravity aircraft
Left: In preparation for the Apollo 9 spacewalk, astronaut Russell L. Schweickart tests the Portable Life Support System backpack in an altitude chamber at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: Schweickart trains for his spacewalk in MSC’s Water Immersion Facility. Right: Apollo 9 backup astronauts Richard F. Gordon, left, and Alan L. Bean train for the spacewalk in the KC-135 zero-gravity aircraft.

Apollo 9’s 10-day mission would take place in the relative safety of low Earth orbit. After docking with the LM, the crew’s first major task involved the first spacewalk of the Apollo program and the only in-space test of the new A7L spacesuit before the Moon landing. McDivitt and Schweickart planned to enter the LM, leaving Scott in the CM. Schweickart and Scott would each perform a spacewalk from their respective spacecraft. Scott would only stand in the open CM hatch while Schweickart would exit via the LM’s front hatch onto its porch, translate over to the CM using handrails, retrieve materials samples mounted on the spacecraft’s exterior and return back to the LM, spending two hours outside. This spacewalk tested the ability of crews to transfer through open space, in case a malfunction with the tunnel or hatches between the two spacecraft prevented an internal transfer. The day after the spacewalk, McDivitt and Schweickart planned to undock the LM, leaving Scott in the CM, fly it up to 100 miles away, testing its descent and ascent stages before returning to Scott in the CM who would perform the rendezvous and docking.

Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida
At NASA’s Kennedy Space Center in Florida, three views of the Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A.

The first of the three vehicles in processing flow at KSC, Apollo 9 rolled out from High Bay 3 of the Vehicle Assembly Building (VAB) to Launch Pad 39A on Jan. 3, just 13 days after Apollo 8 launched from the same facility, causing relatively minor damage. Stages of the Apollo 9 Saturn V had arrived at KSC during the spring and summer of 1968, the LM arrived in June and the Command and Service Modules (CSM) in October. Workers completed stacking of the Saturn V in October, adding the Apollo spacecraft in early December. On Jan. 8, NASA announced Feb. 28, 1969, as the planned launch date for Apollo 9.

Apollo 9 astronauts James A. McDivitt, front, David R. Scott, and Russell L. Schweickart depart crew quarters for the ride to Launch Pad 39A for emergency escape training Scott, left, Schweickart, and McDivitt in the White Room during the pad emergency escape drill Scott, left, McDivitt, and Schweickart pose with their mission patch following a press conference at Grumman Aircraft and Engineering Corporation in Bethpage, New York
Left: Apollo 9 astronauts James A. McDivitt, front, David R. Scott, and Russell L. Schweickart depart crew quarters for the ride to Launch Pad 39A for emergency escape training. Middle: Scott, left, Schweickart, and McDivitt in the White Room during the pad emergency escape drill. Right: Scott, left, McDivitt, and Schweickart pose with their mission patch following a press conference at Grumman Aircraft and Engineering Corporation in Bethpage, New York.

Workers at the pad immediately began to prepare the vehicle for flight, including software integration tests with the Mission Control Center at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. On Jan. 15, the prime and backup crews conducted emergency egress training from their spacecraft at Launch Pad 39A. Launch controllers at KSC successfully completed the Flight Readiness Test, the final major overall test of the vehicle’s systems, between Jan. 19 and 22. During a Jan. 25 press conference at the Grumman Aircraft and Engineering Corporation in Bethpage, New York, manufacturer of the LM, the Apollo 9 astronauts provided reporters with an overview of their mission.

Apollo 10

Assuming Apollo 9 met its objectives and the LM proved space worthy in Earth orbit, in May Apollo 10 would repeat many of those tests in lunar orbit, including flying to within nine miles of the Moon’s surface.

Apollo 10 backup astronauts L. Gordon Cooper, front, and Edgar D. Mitchell arrive in the vacuum chamber in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida for a Lunar Module (LM) altitude test Engineers in the MSOB conduct a docking test between the LM and the Command Module (CM) docking test Engineers prepare the CM for an altitude test
Left: Apollo 10 backup astronauts L. Gordon Cooper, front, and Edgar D. Mitchell arrive in the vacuum chamber in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida for a Lunar Module (LM) altitude test. Middle: Engineers in the MSOB conduct a docking test between the LM and the Command Module (CM) docking test. Right: Engineers prepare the CM for an altitude test.

In November 1968, just six months before the planned launch date, NASA officially named the Apollo 10 crew. The prime crew consisted of Thomas P. Stafford, John W. Young, and Eugene A. Cernan. All had flown Gemini missions and had recently served as the Apollo 7 backup crew. L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell served as their backups.

In High Bay 2 of the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida, the three stages of the Apollo 10 Saturn V await the arrival of the spacecraft In KSC’s Manned Spacecraft Operations Building (MSOB), workers remove the Lunar Module (LM) from an altitude chamber Workers in the MSOB lower the LM onto the base of the Spacecraft LM Adapter (SLA) After installing the main engine bell, workers lift the Command and Service Module for mating with the SLA
Left: In High Bay 2 of the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida, the three stages of the Apollo 10 Saturn V await the arrival of the spacecraft. Middle left: In KSC’s Manned Spacecraft Operations Building (MSOB), workers remove the Lunar Module (LM) from an altitude chamber. Middle right: Workers in the MSOB lower the LM onto the base of the Spacecraft LM Adapter (SLA). Right: After installing the main engine bell, workers lift the Command and Service Module for mating with the SLA.

In the VAB’s High Bay 2, workers had completed stacking the Apollo 10 Saturn V’s three stages by the final days of 1968, while their colleagues prepared to roll Apollo 9’s rocket to the pad a few days later. In the nearby Manned Spacecraft Operations Building (MSOB), prime and backup crews completed altitude tests of the LM in December and workers conducted a docking test between the LM and the CM. On Jan. 16, Stafford, Young, and Cernan completed their altitude test of the CM, followed by Cooper, Eisele, and Mitchell the next day. Workers removed the spacecraft from the altitude chamber in preparation for its rollover to the VAB in early February for stacking onto the rocket.

Apollo 11

Assuming Apollo 9 and 10 accomplished their objectives, Apollo 11 would attempt the first Moon landing in July. Should Apollo 11 not succeed, NASA would try again with Apollo 12 in September and even Apollo 13 in November or December. Spacecraft and rocket manufacturers continued building components to meet that aggressive schedule.

Apollo 11 crew of Edwin E. “Buzz” Aldrin, left, Neil A. Armstrong, and Michael Collins
Apollo 11 crew of Edwin E. “Buzz” Aldrin, left, Neil A. Armstrong, and Michael Collins.

On Jan. 9, a mere six months before the planned launch date, NASA formally announced the Apollo 11 crew, the second all-veteran three-person crew after Apollo 10 – and the last all-veteran crew until STS-26 in 1988. The next day, NASA introduced the Apollo 11 crew during a press conference at MSC. The prime crew consisted of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin. Each astronaut had flown one Gemini mission. Armstrong and Aldrin had served on the backup crew for Apollo 8 while Collins was initially a member of the prime Apollo 8 crew until a bone spur in his neck requiring surgery sidelined him. He fully recovered from the operation, and NASA included him in the Apollo 11 crew. The Apollo 11 backup crew consisted of James A. Lovell, William A. Anders, and Fred W. Haise. Lovell and Anders had just completed the Apollo 8 lunar orbit mission with Haise a backup crew member on that flight. When Anders announced that he would retire from NASA in August 1969 to join the National Space Council, Thomas K. “Ken” Mattingly began training in parallel with Anders in case the mission slipped past that date.

The Lunar Module for Apollo 11 arrives at NASA’s Kennedy Space Center (KSC) in Florida The Apollo 11 Command Module, left, and Service Module, in KSC’s Manned Spacecraft Operations Building shortly after their arrival The S-IVB third stage for Apollo 11’s Saturn V rocket arrives at KSC
Left: The Lunar Module for Apollo 11 arrives at NASA’s Kennedy Space Center (KSC) in Florida. Middle: The Apollo 11 Command Module, left, and Service Module, in KSC’s Manned Spacecraft Operations Building shortly after their arrival. Right: The S-IVB third stage for Apollo 11’s Saturn V rocket arrives at KSC.

Hardware began to arrive at KSC for Apollo 11. With the Apollo 10 CSM still undergoing testing in the MSOB, the Apollo 11 LM’s ascent and descent stages arrived Jan. 8 and 12, respectively, followed by the CM and SM on Jan. 23. Workers in the MSOB prepared the spacecraft for vacuum chamber testing. The Saturn V’s S-IVB third stage arrived on Jan. 19. Workers trucked it to the VAB where it awaited the arrival of the first two stages, scheduled for February.

Lunar Receiving Laboratory

Schematic of the Lunar Receiving Laboratory (LRL) showing its major functional areas A mockup Command Module in the spacecraft storage area, part of the Crew Reception Area, in the LRL
Left:  Schematic of the Lunar Receiving Laboratory (LRL) showing its major functional areas.  Right:  A mockup Command Module in the spacecraft storage area, part of the Crew Reception Area, in the LRL.

With the Moon landing possibly just six months away, NASA continued to prepare key facilities designed to receive astronauts returning from the Moon. The 83,000-square-foot Lunar Receiving Laboratory (LRL), residing in MSC’s Building 37, was specially designed and built to isolate the astronauts, their spacecraft, and lunar samples to prevent back-contamination of the Earth by any possible lunar micro-organisms, and to maintain the lunar samples in as pristine a condition as possible. The building was completed in 1967, and over the next year, workers outfitted its laboratories and other facilities. A 10-day simulation in the facility in November 1968 found some deficiencies that NASA addressed promptly. On Jan. 23, 1969, workers brought a mockup Apollo CM into the LRL’s spacecraft storage area for fit checks.

Workers at the Norfolk Naval Air Station in Virginia hoist the Mobile Quarantine facility (MQF) onto the USS Guadalcanal The flexible tunnel set up between the MQF and a mockup Command Module Workers in Norfolk load the MQF onto a C-141 cargo plane for the return flight to Ellington Air Force Base in Houston
Left: Workers at the Norfolk Naval Air Station in Virginia hoist the Mobile Quarantine facility (MQF) onto the USS Guadalcanal. Middle: The flexible tunnel set up between the MQF and a mockup Command Module. Right: Workers in Norfolk load the MQF onto a C-141 cargo plane for the return flight to Ellington Air Force Base in Houston.

An integral component of the back-contamination prevention process was the Mobile Quarantine Facility (MQF). Following lunar landing missions, the MQF housed astronauts and support personnel from their arrival onboard the prime recovery ship shortly after splashdown through transport to the LRL. Under contract to NASA, Melpar, Inc., of Falls Church, Virginia, converted four 35-foot Airstream trailers into MQFs, delivering the first unit in March 1968 and the last three in the spring of 1969. The first unit was used extensively for testing, with lessons learned incorporated into the later models. On Jan. 21, 1969, workers loaded the MQF aboard a U.S. Air Force C-141 cargo plane at Ellington Air Force Base near MSC to transport it to the Norfolk Naval Air Station in Virginia. Six recovery specialists from MSC spent 10 days inside the MQF, first aboard the helicopter landing-platform USS Guadalcanal (LPH-7), including attaching a flexible tunnel to a boilerplate Apollo CM, and then aboard the destroyer USS Fox (DLG-33). The overall exercise, successfully completed on Feb. 3, tested all MQF systems aboard ships and aircraft to simulate recovery operations after a lunar landing mission.

To be continued …

With special thanks to Ed Hengeveld for imagery expertise.

News from around the world in January 1969:

Jan. 7 – Congress doubles the President’s salary from $100,000 to $200,000 a year.

Jan. 9 – First test flight of the Franco-British Concorde supersonic jetliner in Bristol, U.K.

Jan. 12 – In Super Bowl III, played in Miami’s Orange Bowl, the New York Jets beat the Baltimore Colts 16 to 7.

Jan. 16 – The Soviet Union conducts the first docking between two crewed spacecraft and the first crew transfer by spacewalking cosmonauts during the Soyuz 4 and 5 missions.

Jan. 20 – Richard M. Nixon inaugurated as the 37th U.S. President.

Jan. 30 – The Beatles perform their last live gig, a 42-minute concert on the rooftop of Apple Corps Headquarters in London.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
    • By NASA
      On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

      Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.
      The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

      Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

      Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.
      Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

      Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

      Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.
      On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

      Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.
      After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

      Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.
      On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

      Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.
      During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

      Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.
      On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

      Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.
      Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

      Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?
      Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

      Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

      A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.
      Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

      Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.
      On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.
      The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

      Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

      Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.
      On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.
      The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.
      Enjoy the crew narrate a video about the STS-129 mission.
      Explore More
      23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 4 days ago 12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 1 week ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 2 weeks ago View the full article
    • By NASA
      At NASA, high-end computing is essential for many agency missions. This technology helps us advance our understanding of the universe – from our planet to the farthest reaches of the cosmos. Supercomputers enable projects across diverse research, such as making discoveries about the Sun’s activity that affects technologies in space and life on Earth, building artificial intelligence-based models for innovative weather and climate science, and helping redesign the launch pad that will send astronauts to space with Artemis II. 
      These projects are just a sample of the many on display in NASA’s exhibit during the International Conference for High Performance Computing, Networking, Storage and Analysis, or SC24. NASA’s Dr. Nicola “Nicky” Fox, associate administrator for the agency’s Science Mission Directorate, will deliver the keynote address, “NASA’s Vision for High Impact Science and Exploration,” on Tuesday, Nov. 19, where she’ll share more about the ways NASA uses supercomputing to explore the universe for the benefit of all. Here’s a little more about the work NASA will share at the conference: 
      1. Simulations Help in Redesign of the Artemis Launch Environment
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This simulation of the Artemis I launch shows how the Space Launch System rocket's exhaust plumes interact with the air, water, and the launchpad. Colors on surfaces indicate pressure levels—red for high pressure and blue for low pressure. The teal contours illustrate where water is present. NASA/Chris DeGrendele, Timothy Sandstrom Researchers at NASA Ames are helping ensure astronauts launch safely on the Artemis II test flight, the first crewed mission of the Space Launch System (SLS) rocket and Orion spacecraft, scheduled for 2025. Using the Launch Ascent and Vehicle Aerodynamics software, they simulated the complex interactions between the rocket plume and the water-based sound suppression system used during the Artemis I launch, which resulted in damage to the mobile launcher platform that supported the rocket before liftoff.
      Comparing simulations with and without the water systems activated revealed that the sound suppression system effectively reduces pressure waves, but exhaust gases can redirect water and cause significant pressure increases. 
      The simulations, run on the Aitken supercomputer at the NASA Advanced Supercomputing facility at Ames, generated about 400 terabytes of data. This data was provided to aerospace engineers at NASA’s Kennedy Space Center in Florida, who are redesigning the flame deflector and mobile launcher for the Artemis II launch.
      2. Airplane Design Optimization for Fuel Efficiency
      In this comparison of aircraft designs, the left wing models the aircraft’s initial geometry, while the right wing models an optimized shape. The surface is colored by the air pressure on the aircraft, with orange surfaces representing shock waves in the airflow. The optimized design modeled on the right wing reduces drag by 4% compared to the original, leading to improved fuel efficiency. NASA/Brandon Lowe To help make commercial flight more efficient and sustainable, researchers and engineers at NASA’s Ames Research Center in California’s Silicon Valley are working to refine aircraft designs to reduce air resistance, or drag, by fine-tuning the shape of wings, fuselages, and other aircraft structural components. These changes would lower the energy required for flight and reduce the amount of fuel needed, produce fewer emissions, enhance overall performance of aircraft, and could help reduce noise levels around airports. 
      Using NASA’s Launch, Ascent, and Vehicle Aerodynamics computational modeling software, developed at Ames, researchers are leveraging the power of agency supercomputers to run hundreds of simulations to explore a variety of design possibilities – on existing aircraft and future vehicle concepts. Their work has shown the potential to reduce drag on an existing commercial aircraft design by 4%, translating to significant fuel savings in real-world applications.
      3. Applying AI to Weather and Climate
      This visualization compares the track of the Category 4 hurricane, Ida, from MERRA-2 reanalysis data (left) with a prediction made without specific training, from NASA and IBM’s Prithvi WxC foundation model (right). Both models were initialized at 00 UTC on 2021-08-27.The University of Alabama in Huntsville/Ankur Kumar; NASA/Sujit Roy Traditional weather and climate models produce global and regional results by solving mathematical equations for millions of small areas (grid boxes) across Earth’s atmosphere and oceans. NASA and partners are now exploring newer approaches using artificial intelligence (AI) techniques to train a foundation model. 
      Foundation models are developed using large, unlabeled datasets so researchers can fine-tune results for different applications, such as creating forecasts or predicting weather patterns or climate changes, independently with minimal additional training. 
      NASA developed the open source, publicly available Prithvi Weather-Climate foundation model (Prithvi WxC), in collaboration with IBM Research. Prithvi WxC was pretrained using 160 variables from  NASA’s Modern-era Retrospective analysis for Research and Applications (MERRA-2) dataset on the newest NVIDIA A100 GPUs at the NASA Advanced Supercomputing facility. 
      Armed with 2.3 billion parameters, Prithvi WxC can model a variety of weather and climate phenomena – such as hurricane tracks – at fine resolutions. Applications include targeted weather prediction and climate projection, as well as representing physical processes like gravity waves. 
      4. Simulations and AI Reveal the Fascinating World of Neutron Stars
      3D simulation of pulsar magnetospheres, run on NASA’s Aitken supercomputer using data from the agency‘s Fermi space telescope. The red arrow shows the direction of the star’s magnetic field. Blue lines trace high-energy particles, producing gamma rays, in yellow. Green lines represent light particles hitting the observer’s plane, illustrating how Fermi detects pulsar gamma rays. NASA/Constantinos Kalapotharakos To explore the extreme conditions inside neutron stars, researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are using a blend of simulation, observation, and AI to unravel the mysteries of these extraordinary cosmic objects. Neutron stars are the dead cores of stars that have exploded and represent some of the densest objects in the universe.
      Cutting-edge simulations, run on supercomputers at the NASA Advanced Supercomputing facility, help explain phenomena observed by NASA’s Fermi Gamma-ray Space Telescope and Neutron star Interior Composition Explorer (NICER) observatory. These phenomena include the rapidly spinning, highly magnetized neutron stars known as pulsars, whose detailed physical mechanisms have remained mysterious since their discovery. By applying AI tools such as deep neural networks, the scientists can infer the stars’ mass, radius, magnetic field structure, and other properties from data obtained by the NICER and Fermi observatories. 
      The simulations’ unprecedented results will guide similar studies of black holes and other space environments, as well as play a pivotal role in shaping future scientific space missions and mission concepts.
      5. Modeling the Sun in Action – From Tiny to Large Scales 
      Image from a 3D simulation showing the evolution of flows in the upper layers of the Sun, with the most vigorous motions shown in red. These turbulent flows can generate magnetic fields and excite sound waves, shock waves, and eruptions. NASA/Irina Kitiashvili and Timothy A. Sandstrom The Sun’s activity, producing events such as solar flares and coronal mass ejections, influences the space environment and cause space weather disturbances that can interfere with satellite electronics, radio communications, GPS signals, and power grids on Earth. Scientists at NASA Ames produced highly realistic 3D models that – for the first time – allow them to examine the physics of solar plasma in action, from very small to very large scales. These models help interpret observations from NASA spacecraft like the Solar Dynamics Observatory (SDO). 
      Using NASA’s StellarBox code on supercomputers at NASA’s Advanced Supercomputing facility, the scientists improved our understanding of the origins of solar jets and tornadoes – bursts of extremely hot, charged plasma in the solar atmosphere. These models allow the science community to address long-standing questions of solar magnetic activity and how it affects space weather.
      6. Scientific Visualization Makes NASA Data Understandable
      This global map is a frame from an animation showing how wind patterns and atmospheric circulation moved carbon dioxide through Earth’s atmosphere from January to March 2020. The DYAMOND model’s high resolution shows unique sources of carbon dioxide emissions and how they spread across continents and oceans.NASA/Scientific Visualization Studio NASA simulations and observations can yield petabytes of data that are difficult to comprehend in their original form. The Scientific Visualization Studio (SVS), based at NASA Goddard, turns data into insight by collaborating closely with scientists to create cinematic, high-fidelity visualizations.
      Key infrastructure for these SVS creations includes the NASA Center for Climate Simulation’s Discover supercomputer at Goddard, which hosts a variety of simulations and provides data analysis and image-rendering capabilities. Recent data-driven visualizations show a coronal mass ejection from the Sun hitting Earth’s magnetosphere using the Multiscale Atmosphere-Geospace Environment (MAGE) model; global carbon dioxide emissions circling the planet in the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) model; and representations of La Niña and El Niño weather patterns using the El Niño-Southern Oscillation (ENSO) model. 
      For more information about NASA’s virtual exhibit at the International Conference for High Performance Computing, Networking, Storage and Analysis, being held in Atlanta, Nov. 17-22, 2024, visit: 
      https://www.nas.nasa.gov/SC24
      For more information about supercomputers run by NASA High-End Computing, visit: 
      https://hec.nasa.gov
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Authors: Jill Dunbar, Michelle Moyer, and Katie Pitta, NASA’s Ames Research Center; and Jarrett Cohen, NASA’s Goddard Space Flight Center
      View the full article
  • Check out these Videos

×
×
  • Create New...