Jump to content

Recommended Posts

  • Publishers
Posted

The new year of 1969 dawned with optimism that NASA would meet President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth. The previous year saw four Apollo missions, two uncrewed and two carrying three astronauts each, test different components of the lunar landing architecture, culminating with Apollo 8’s December flight around the Moon. Challenges remaining for the new year included testing the Lunar Module (LM) with a crew, first in Earth orbit, and then in lunar orbit, a flight that served as a dress rehearsal for the Moon landing that could take place on the following mission. With flights occurring every two months, engineers at NASA’s Kennedy Space Center (KSC) in Florida processed three spacecraft and launch vehicles in parallel.

Recovering from the fire

The Apollo 1 crew of Virgil I. “Gus” Grissom, left, Edward H. White, and Roger B. Chaffee Liftoff of the first Saturn V on the Apollo 4 mission The Lunar Module for the Apollo 5 mission Recovery of the Apollo 6 Command Module
Left: The Apollo 1 crew of Virgil I. “Gus” Grissom, left, Edward H. White, and Roger B. Chaffee. Middle left: Liftoff of the first Saturn V on the Apollo 4 mission. Middle right: The Lunar Module for the Apollo 5 mission. Right: Recovery of the Apollo 6 Command Module.

The years 1967 and 1968 proved turbulent for the world. For NASA, the focus remained on recovering from the tragic Apollo 1 fire in time to meet President Kennedy’s fast approaching end of the decade deadline. The fire resulted in a thorough redesign of the Command Module (CM) to reduce flammability risks and to include an easy to open hatch. Engineers also removed flammable materials from the Lunar Module (LM). In November 1967, the first flight of the Saturn V carried Apollo 4 on a nine-hour uncrewed mission to test the CM’s heat shield. Apollo 5 in January 1968 completed an uncrewed test of the LM so successful that NASA decided to cancel a second test. Although fraught with problems, the April 1968 flight of Apollo 6 tested the CM heat shield once again. Managers believed that engineers could solve the problems encountered during this mission and declared that the next Saturn V would carry a crew.

Apollo 7 and 8

Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham on the recovery ship USS Essex following their 11-day mission The famous Earthrise photograph from Apollo 8
Left: Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham on the recovery ship USS Essex following their 11-day mission. Right: The famous Earthrise photograph from Apollo 8.

By October 1968, thorough ground testing of the Apollo spacecraft enabled the first crewed mission since the fire. Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham successfully completed the 11-day test flight, achieving all mission objectives. In August, with LM development running behind schedule, senior NASA managers began discussions of sending Apollo 8 on a circumlunar flight, pending the outcome of Apollo 7. With that hurdle successfully cleared, astronauts Frank Borman, James A. Lovell, and William A. Anders orbited the Moon 10 times during Christmas 1968, taking a giant leap toward achieving the Moon landing.

At the White House, Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders present a copy of the Earthrise photograph to President Lyndon B. Johnson Accompanied by Vice President Hubert H. Humphrey, Borman, Lovell, and Anders take a motorcade from the White House to the Capitol Borman, left, Lovell, and Anders address a joint meeting of Congress
Left: At the White House, Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders present a copy of the Earthrise photograph to President Lyndon B. Johnson. Middle: Accompanied by Vice President Hubert H. Humphrey, Borman, Lovell, and Anders take a motorcade from the White House to the Capitol. Right: Borman, left, Lovell, and Anders address a joint meeting of Congress.

With their space missions completed, the Apollo 7 and 8 crews remained busy with events celebrating their successes. On Jan. 3, 1969, TIME magazine named Apollo 8 astronauts Borman, Lovell, and Anders their Men of the Year for 1968. Kicking off a whirlwind of events, on Jan. 9, outgoing President Lyndon B. Johnson welcomed them to the White House, where he presented them with NASA Distinguished Service Medals. They in turn presented him with a copy of the famous Earthrise photograph. Accompanied by Vice President Hubert H. Humphrey, Borman, Lovell, and Anders rode in a motorcade down Pennsylvania Avenue to the Capitol where the astronauts addressed a joint meeting of Congress. From there, they proceeded to the State Department for a press conference, their day ending with a dinner in their honor at the Smithsonian Institution.

Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders wave to the crowds assembled along their parade route in New York City Borman, Lovell, and Anders address a crowd at Newark airport In Miami’s Orange Bowl Lovell, left, Borman, and Anders lead the fans in the Pledge of Allegiance at Super Bowl III
Left: Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders wave to the crowds assembled along their parade route in New York City. Middle: Borman, Lovell, and Anders address a crowd at Newark airport. Right: In Miami’s Orange Bowl Lovell, left, Borman, and Anders lead the fans in the Pledge of Allegiance at Super Bowl III.

On Jan. 10, New York City held a tickertape parade for Borman, Lovell, and Anders. Mayor John V. Lindsay presented them with Medals of the City of New York, after which they attended a luncheon at Lincoln Center, a reception at the United Nations, and dinner at the Waldorf-Astoria Hotel. The next day, in 15-degree weather, they spoke to a crowd of about 1,500 people at Newark Airport before boarding a plane for much warmer Miami, where on Jan. 12 they attended Super Bowl III, and led the Orange Bowl crowd in reciting the Pledge of Allegiance.

In Houston, Apollo 8 astronauts William A. Anders, left, Frank Borman, and James A. Lovell present an Earthrise photograph and flags of Texas to Governor John B. Connally, far right, and Mayor Louie Welch, hidden behind the photograph Borman and his family in the parade through downtown Houston, with Lovell and Anders and their families following behind Lovell, Borman, and Anders wave to the crowds in the parade in Chicago
Left: In Houston, Apollo 8 astronauts William A. Anders, left, Frank Borman, and James A. Lovell present an Earthrise photograph and flags of Texas to Governor John B. Connally, far right, and Mayor Louie Welch, hidden behind the photograph. Middle: Borman and his family in the parade through downtown Houston, with Lovell and Anders and their families following behind. Right: Lovell, Borman, and Anders wave to the crowds in the parade in Chicago.

A crowd estimated at about 250,000 welcomed Borman, Lovell, and Anders home to Houston on Jan. 13. In a ceremony outside the Albert Thomas Convention Center, Mayor Louie Welch presented them with bronze medals for heroism, and the astronauts presented Welch and Texas Governor John B. Connally with plaques bearing Texas flags they had flown to the Moon as well as a framed copy of the Earthrise photograph. The astronauts took part in the largest parade in the city’s history. The next day, the city of Chicago welcomed Borman, Lovell, and Anders. An estimated 1.5 million people cheered them on their parade route to a reception where they received honors from city council.

The Apollo 7 Command Module and a Lunar Module mockup on a float in President Richard M. Nixon’s inauguration parade; Apollo 7 astronauts Walter M. Schirra, R. Walter Cunningham, and Donn F. Eisele preceded the float in an open-air limousine Apollo 8 astronauts Frank Borman, left, James A. Lovell, and William A. Anders with President Nixon at the White House
Left: The Apollo 7 Command Module and a Lunar Module mockup on a float in President Richard M. Nixon’s inauguration parade; Apollo 7 astronauts Walter M. Schirra, R. Walter Cunningham, and Donn F. Eisele preceded the float in an open-air limousine. Image credit: courtesy Richard Nixon Library. Right: Apollo 8 astronauts Frank Borman, left, James A. Lovell, and William A. Anders with President Nixon at the White House.

On Jan. 20, Apollo 7 astronauts Schirra, Eisele, and Cunningham rode in President Richard M. Nixon’s inauguration parade in Washington, D.C. Their spacecraft and a LM mockup rode on a float behind them. Ten days later, the new President invited Apollo 8 astronauts Borman, Lovell, and Anders to the White House where he announced that Borman and his family would embark on an 18-day goodwill tour of eight European nations, starting on Feb. 2.

Apollo 9

The LM remained the one component of the lunar landing architecture not yet tested by astronauts in space. That task fell to James A. McDivitt, David R. Scott, and Russell L. Schweickart, the crew of Apollo 9. They and their backups Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean spent many hours in the LM simulators and training for the spacewalk component of the mission.

In preparation for the Apollo 9 spacewalk, astronaut Russell L. Schweickart tests the Portable Life Support System backpack in an altitude chamber at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston Schweickart trains for his spacewalk in MSC’s Water Immersion Facility Apollo 9 backup astronauts Richard F. Gordon, left, and Alan L. Bean train for the spacewalk in the KC-135 zero-gravity aircraft
Left: In preparation for the Apollo 9 spacewalk, astronaut Russell L. Schweickart tests the Portable Life Support System backpack in an altitude chamber at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: Schweickart trains for his spacewalk in MSC’s Water Immersion Facility. Right: Apollo 9 backup astronauts Richard F. Gordon, left, and Alan L. Bean train for the spacewalk in the KC-135 zero-gravity aircraft.

Apollo 9’s 10-day mission would take place in the relative safety of low Earth orbit. After docking with the LM, the crew’s first major task involved the first spacewalk of the Apollo program and the only in-space test of the new A7L spacesuit before the Moon landing. McDivitt and Schweickart planned to enter the LM, leaving Scott in the CM. Schweickart and Scott would each perform a spacewalk from their respective spacecraft. Scott would only stand in the open CM hatch while Schweickart would exit via the LM’s front hatch onto its porch, translate over to the CM using handrails, retrieve materials samples mounted on the spacecraft’s exterior and return back to the LM, spending two hours outside. This spacewalk tested the ability of crews to transfer through open space, in case a malfunction with the tunnel or hatches between the two spacecraft prevented an internal transfer. The day after the spacewalk, McDivitt and Schweickart planned to undock the LM, leaving Scott in the CM, fly it up to 100 miles away, testing its descent and ascent stages before returning to Scott in the CM who would perform the rendezvous and docking.

Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A at NASA’s Kennedy Space Center in Florida
At NASA’s Kennedy Space Center in Florida, three views of the Apollo 9 rollout from the Vehicle Assembly Building to Launch Pad 39A.

The first of the three vehicles in processing flow at KSC, Apollo 9 rolled out from High Bay 3 of the Vehicle Assembly Building (VAB) to Launch Pad 39A on Jan. 3, just 13 days after Apollo 8 launched from the same facility, causing relatively minor damage. Stages of the Apollo 9 Saturn V had arrived at KSC during the spring and summer of 1968, the LM arrived in June and the Command and Service Modules (CSM) in October. Workers completed stacking of the Saturn V in October, adding the Apollo spacecraft in early December. On Jan. 8, NASA announced Feb. 28, 1969, as the planned launch date for Apollo 9.

Apollo 9 astronauts James A. McDivitt, front, David R. Scott, and Russell L. Schweickart depart crew quarters for the ride to Launch Pad 39A for emergency escape training Scott, left, Schweickart, and McDivitt in the White Room during the pad emergency escape drill Scott, left, McDivitt, and Schweickart pose with their mission patch following a press conference at Grumman Aircraft and Engineering Corporation in Bethpage, New York
Left: Apollo 9 astronauts James A. McDivitt, front, David R. Scott, and Russell L. Schweickart depart crew quarters for the ride to Launch Pad 39A for emergency escape training. Middle: Scott, left, Schweickart, and McDivitt in the White Room during the pad emergency escape drill. Right: Scott, left, McDivitt, and Schweickart pose with their mission patch following a press conference at Grumman Aircraft and Engineering Corporation in Bethpage, New York.

Workers at the pad immediately began to prepare the vehicle for flight, including software integration tests with the Mission Control Center at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. On Jan. 15, the prime and backup crews conducted emergency egress training from their spacecraft at Launch Pad 39A. Launch controllers at KSC successfully completed the Flight Readiness Test, the final major overall test of the vehicle’s systems, between Jan. 19 and 22. During a Jan. 25 press conference at the Grumman Aircraft and Engineering Corporation in Bethpage, New York, manufacturer of the LM, the Apollo 9 astronauts provided reporters with an overview of their mission.

Apollo 10

Assuming Apollo 9 met its objectives and the LM proved space worthy in Earth orbit, in May Apollo 10 would repeat many of those tests in lunar orbit, including flying to within nine miles of the Moon’s surface.

Apollo 10 backup astronauts L. Gordon Cooper, front, and Edgar D. Mitchell arrive in the vacuum chamber in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida for a Lunar Module (LM) altitude test Engineers in the MSOB conduct a docking test between the LM and the Command Module (CM) docking test Engineers prepare the CM for an altitude test
Left: Apollo 10 backup astronauts L. Gordon Cooper, front, and Edgar D. Mitchell arrive in the vacuum chamber in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida for a Lunar Module (LM) altitude test. Middle: Engineers in the MSOB conduct a docking test between the LM and the Command Module (CM) docking test. Right: Engineers prepare the CM for an altitude test.

In November 1968, just six months before the planned launch date, NASA officially named the Apollo 10 crew. The prime crew consisted of Thomas P. Stafford, John W. Young, and Eugene A. Cernan. All had flown Gemini missions and had recently served as the Apollo 7 backup crew. L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell served as their backups.

In High Bay 2 of the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida, the three stages of the Apollo 10 Saturn V await the arrival of the spacecraft In KSC’s Manned Spacecraft Operations Building (MSOB), workers remove the Lunar Module (LM) from an altitude chamber Workers in the MSOB lower the LM onto the base of the Spacecraft LM Adapter (SLA) After installing the main engine bell, workers lift the Command and Service Module for mating with the SLA
Left: In High Bay 2 of the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida, the three stages of the Apollo 10 Saturn V await the arrival of the spacecraft. Middle left: In KSC’s Manned Spacecraft Operations Building (MSOB), workers remove the Lunar Module (LM) from an altitude chamber. Middle right: Workers in the MSOB lower the LM onto the base of the Spacecraft LM Adapter (SLA). Right: After installing the main engine bell, workers lift the Command and Service Module for mating with the SLA.

In the VAB’s High Bay 2, workers had completed stacking the Apollo 10 Saturn V’s three stages by the final days of 1968, while their colleagues prepared to roll Apollo 9’s rocket to the pad a few days later. In the nearby Manned Spacecraft Operations Building (MSOB), prime and backup crews completed altitude tests of the LM in December and workers conducted a docking test between the LM and the CM. On Jan. 16, Stafford, Young, and Cernan completed their altitude test of the CM, followed by Cooper, Eisele, and Mitchell the next day. Workers removed the spacecraft from the altitude chamber in preparation for its rollover to the VAB in early February for stacking onto the rocket.

Apollo 11

Assuming Apollo 9 and 10 accomplished their objectives, Apollo 11 would attempt the first Moon landing in July. Should Apollo 11 not succeed, NASA would try again with Apollo 12 in September and even Apollo 13 in November or December. Spacecraft and rocket manufacturers continued building components to meet that aggressive schedule.

Apollo 11 crew of Edwin E. “Buzz” Aldrin, left, Neil A. Armstrong, and Michael Collins
Apollo 11 crew of Edwin E. “Buzz” Aldrin, left, Neil A. Armstrong, and Michael Collins.

On Jan. 9, a mere six months before the planned launch date, NASA formally announced the Apollo 11 crew, the second all-veteran three-person crew after Apollo 10 – and the last all-veteran crew until STS-26 in 1988. The next day, NASA introduced the Apollo 11 crew during a press conference at MSC. The prime crew consisted of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin. Each astronaut had flown one Gemini mission. Armstrong and Aldrin had served on the backup crew for Apollo 8 while Collins was initially a member of the prime Apollo 8 crew until a bone spur in his neck requiring surgery sidelined him. He fully recovered from the operation, and NASA included him in the Apollo 11 crew. The Apollo 11 backup crew consisted of James A. Lovell, William A. Anders, and Fred W. Haise. Lovell and Anders had just completed the Apollo 8 lunar orbit mission with Haise a backup crew member on that flight. When Anders announced that he would retire from NASA in August 1969 to join the National Space Council, Thomas K. “Ken” Mattingly began training in parallel with Anders in case the mission slipped past that date.

The Lunar Module for Apollo 11 arrives at NASA’s Kennedy Space Center (KSC) in Florida The Apollo 11 Command Module, left, and Service Module, in KSC’s Manned Spacecraft Operations Building shortly after their arrival The S-IVB third stage for Apollo 11’s Saturn V rocket arrives at KSC
Left: The Lunar Module for Apollo 11 arrives at NASA’s Kennedy Space Center (KSC) in Florida. Middle: The Apollo 11 Command Module, left, and Service Module, in KSC’s Manned Spacecraft Operations Building shortly after their arrival. Right: The S-IVB third stage for Apollo 11’s Saturn V rocket arrives at KSC.

Hardware began to arrive at KSC for Apollo 11. With the Apollo 10 CSM still undergoing testing in the MSOB, the Apollo 11 LM’s ascent and descent stages arrived Jan. 8 and 12, respectively, followed by the CM and SM on Jan. 23. Workers in the MSOB prepared the spacecraft for vacuum chamber testing. The Saturn V’s S-IVB third stage arrived on Jan. 19. Workers trucked it to the VAB where it awaited the arrival of the first two stages, scheduled for February.

Lunar Receiving Laboratory

Schematic of the Lunar Receiving Laboratory (LRL) showing its major functional areas A mockup Command Module in the spacecraft storage area, part of the Crew Reception Area, in the LRL
Left:  Schematic of the Lunar Receiving Laboratory (LRL) showing its major functional areas.  Right:  A mockup Command Module in the spacecraft storage area, part of the Crew Reception Area, in the LRL.

With the Moon landing possibly just six months away, NASA continued to prepare key facilities designed to receive astronauts returning from the Moon. The 83,000-square-foot Lunar Receiving Laboratory (LRL), residing in MSC’s Building 37, was specially designed and built to isolate the astronauts, their spacecraft, and lunar samples to prevent back-contamination of the Earth by any possible lunar micro-organisms, and to maintain the lunar samples in as pristine a condition as possible. The building was completed in 1967, and over the next year, workers outfitted its laboratories and other facilities. A 10-day simulation in the facility in November 1968 found some deficiencies that NASA addressed promptly. On Jan. 23, 1969, workers brought a mockup Apollo CM into the LRL’s spacecraft storage area for fit checks.

Workers at the Norfolk Naval Air Station in Virginia hoist the Mobile Quarantine facility (MQF) onto the USS Guadalcanal The flexible tunnel set up between the MQF and a mockup Command Module Workers in Norfolk load the MQF onto a C-141 cargo plane for the return flight to Ellington Air Force Base in Houston
Left: Workers at the Norfolk Naval Air Station in Virginia hoist the Mobile Quarantine facility (MQF) onto the USS Guadalcanal. Middle: The flexible tunnel set up between the MQF and a mockup Command Module. Right: Workers in Norfolk load the MQF onto a C-141 cargo plane for the return flight to Ellington Air Force Base in Houston.

An integral component of the back-contamination prevention process was the Mobile Quarantine Facility (MQF). Following lunar landing missions, the MQF housed astronauts and support personnel from their arrival onboard the prime recovery ship shortly after splashdown through transport to the LRL. Under contract to NASA, Melpar, Inc., of Falls Church, Virginia, converted four 35-foot Airstream trailers into MQFs, delivering the first unit in March 1968 and the last three in the spring of 1969. The first unit was used extensively for testing, with lessons learned incorporated into the later models. On Jan. 21, 1969, workers loaded the MQF aboard a U.S. Air Force C-141 cargo plane at Ellington Air Force Base near MSC to transport it to the Norfolk Naval Air Station in Virginia. Six recovery specialists from MSC spent 10 days inside the MQF, first aboard the helicopter landing-platform USS Guadalcanal (LPH-7), including attaching a flexible tunnel to a boilerplate Apollo CM, and then aboard the destroyer USS Fox (DLG-33). The overall exercise, successfully completed on Feb. 3, tested all MQF systems aboard ships and aircraft to simulate recovery operations after a lunar landing mission.

To be continued …

With special thanks to Ed Hengeveld for imagery expertise.

News from around the world in January 1969:

Jan. 7 – Congress doubles the President’s salary from $100,000 to $200,000 a year.

Jan. 9 – First test flight of the Franco-British Concorde supersonic jetliner in Bristol, U.K.

Jan. 12 – In Super Bowl III, played in Miami’s Orange Bowl, the New York Jets beat the Baltimore Colts 16 to 7.

Jan. 16 – The Soviet Union conducts the first docking between two crewed spacecraft and the first crew transfer by spacewalking cosmonauts during the Soyuz 4 and 5 missions.

Jan. 20 – Richard M. Nixon inaugurated as the 37th U.S. President.

Jan. 30 – The Beatles perform their last live gig, a 42-minute concert on the rooftop of Apple Corps Headquarters in London.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA 2025: To the Moon, Mars, and Beyond
    • By NASA
      Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford Venturi Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle – three commercially owned and developed LTVs (Lunar Terrain Vehicle) – are pictured at NASA’s Johnson Space Center in Houston in this photo from Nov. 21, 2024.
      As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations.
      See how these LTVs were tested.
      Image credit: NASA/Bill Stafford
      View the full article
    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990.

      The third servicing mission to the Hubble Space Telescope, placed in orbit in 1990, occurred during the STS-103 mission in December 1999. During the mission, originally planned for June 2000 but accelerated by six months following unexpected failures of the telescope’s attitude control gyroscopes, the astronauts restored the facility to full functionality. During their eight-day mission that featured the first space shuttle crew to spend Christmas in space, the seven-member U.S. and European crew rendezvoused with and captured Hubble, and four astronauts in rotating teams of two conducted three lengthy and complex spacewalks to service and upgrade the telescope. They redeployed the telescope with greater capabilities than ever before to continue its mission to help scientists unlock the secrets of the universe.
      Schematic showing the Hubble Space Telescope’s major components. Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The discovery after the Hubble Space Telescope’s launch in 1990 that its primary mirror suffered from a flaw called spherical aberration disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission in 1993. A second servicing mission in 1997 upgraded the telescope’s capabilities until the next mission planned for three years later. But after three of the telescope’s six gyroscopes failed in 1997, 1998, and 1999, mission rules dictated a call up mission in case additional gyroscope failures sent Hubble into a safe mode. NASA elected to move up some of the servicing tasks from the third mission, splitting it into missions 3A and 3B, planning to fly 3A in October 1999 on Discovery’s STS-103 mission primarily to replace the failed gyroscopes. Delays to the shuttle fleet resulting from anomalies during the launch of STS-93 in July 1993 slipped STS-103 first into November and ultimately into December. Technical issues with Discovery itself pushed the launch date to mid-December, and raised concerns about having a shuttle in orbit during the Y2K transition. Once the launch had slipped to Dec. 19, mission planners cut the mission from 10 to eight days, deleting one of the four spacewalks, to ensure a return before the end of the calendar year. The servicing mission couldn’t come soon enough, as a fourth gyroscope failed aboard Hubble in mid-November, with Discovery already poised on the launch pad to prepare for STS-103. Controllers placed Hubble in a safe mode until the astronauts arrived.
      The STS-103 crew of C. Michael Foale, left, Claude Nicollier, Scott J. Kelly, Curtis L. Brown, Jean-François A. Clervoy, John M. Grunsfeld, and Steven L. Smith. The STS-103 crew patch. The mission patch for the Hubble Servicing Mission-3A. To execute the third Hubble Servicing Mission, in July 1998 NASA selected an experienced four-person team to carry out a record-breaking six spacewalks on the flight then planned for June 2000. The spacewalkers included Mission Specialists Steven L. Smith serving as payload commander, John M. Grunsfeld, C. Michael Foale, and European Space Agency (ESA) astronaut Claude Nicollier from Switzerland. The addition in March 1999 of Commander Curtis L. Brown, Pilot Scott J. Kelly, and Mission Specialist ESA astronaut Jean-François A. Clervoy of France rounded out the highly experienced crew with 18 previous spaceflights among them. Brown earned the distinction as only the fifth person to fly in space six times. For Kelly, STS-103 marked his first spaceflight. Smith, Clervoy, and Grunsfeld each had flown two previous missions, Foale four including a long-duration mission aboard Mir, and Nicollier three. Smith participated in three spacewalks during the second Hubble Servicing Mission and Nicollier served as the Remote Manipulator System (RMS) or robotic arm operator during the first.
      The STS-103 crew at the traditional prelaunch breakfast at NASA’s Kennedy Space Center in Florida. Suited up, the STS-103 astronauts leave crew quarters for the trip to Launch Pad 39B. Space shuttle Discovery on Launch Pad 39B, awaiting launch. Discovery arrived back to KSC at the end of the STS-96 mission on June 6, 1999, and workers towed it to the Orbiter Processing Facility the same day to begin readying it for STS-103. The vehicle rolled over to the Vehicle Assembly Building on Nov. 4, where workers mated it with its external tank and twin solid rocket boosters, before rolling the stack out to Launch Pad 39B on Nov. 13.
      Liftoff of space shuttle Discovery on the STS-103 Hubble Space Telescope servicing mission 3A. The Hubble Space Telescope as Discovery approaches. The STS-103 crew berthing the Hubble into the payload bay. Beginning its 27th trip into space, Discovery lifted off from Launch Pad 39B at 7:50 p.m. EST on Dec. 19 to fix the ailing space telescope. Two days later, Brown and Kelly maneuvered Discovery to within range of Hubble so Clervoy operating the 50-foot-long RMS could grapple the telescope and berth it into the payload bay.
      During the first spacewalk, astronauts John M. Grunsfeld, left, and Steven L. Smith replacing one of the Rate Sensor Units containing two gyroscopes. Smith gives a thumbs up with his image reflected in the Hubble Space Telescope. Smith and Grunsfeld conducted the mission’s first spacewalk on Dec. 22, the flight’s fourth day in space. The duo, aided by Clervoy operating the RMS from inside Discovery, completed two of mission’s highest priority objectives. They replaced the failed gyroscopes, installing three new Rate Sensor Units, each containing two gyroscopes, to return control to the ailing telescope. They also installed six Voltage/Temperature Improvement Kits to prevent the telescope’s batteries from overheating as they aged. The excursion lasted eight hours 15 minutes, at the time the second longest spacewalk.
      During the second spacewalk, astronauts C. Michael Foale, left, and Claude Nicollier during the changeout of the fine guidance sensor. Foale at the end of the Remote Manipulator System services the Hubble Space Telescope. The next day, Nicollier and Foale conducted the mission’s second spacewalk. The main task for this excursion involved installing a new computer aboard Hubble, replacing the original 1970s vintage unit. The new radiation-hardened system ran 20 times faster and carried six times more memory while using one-third the electrical power. They also installed a fine guidance sensor before concluding the eight-hour 10-minute spacewalk.
      Astronauts Steven L. Smith, left, and John M. Grunsfeld begin their servicing activities during the third spacewalk. At the end of the third and final spacewalk, Grunsfeld, left, and Smith provide closing comments about the work the mission accomplished to service the Hubble Space Telescope. Smith and Grunsfeld ventured outside for a second time to complete the flight’s third and final spacewalk on Dec. 24, the first spacewalk conducted on Christmas Eve day. First, they replaced an old reel-to-reel tape recorder with a solid state unit providing a 10-fold increase in recording capability and replaced a failed data transmitter. They installed seven new covers on Hubble’s electronics bay doors for added protection of the telescope’s insulation. This third spacewalk lasted eight hours eight minutes.
      The first space shuttle crew to celebrate Christmas in space, the STS-103 astronauts pose wearing Santa hats. The Hubble Space Telescope shortly after the STS-103 crew released it. The next day, the STS-103 astronauts earned the distinction as the first space shuttle crew to spend Christmas Day in space. Clervoy grappled Hubble, lifted it out of the payload bay and released it to continue its mission. Hubble Space Telescope Program Manager John H. Campbell said after the release, “The spacecraft is being guided by its new gyros under the control of its brand new computer. [It] is now orbiting freely and is in fantastic shape.” After deploying Hubble, the astronauts enjoyed a well-deserved Christmas dinner, with Clervoy providing French delicacies. The crew spent Dec. 26 readying Discovery for its return to Earth, including testing its reaction control system thrusters and aerodynamic surfaces and stowing unneeded gear.
      Astronauts Steven L. Smith, left, Claude Nicollier, and John M. Grunsfeld complete their fluid loading protocol and put on their launch and entry suits prior to reentry. Space shuttle Discovery makes a perfect night landing at NASA’s Kennedy Space Center in Florida. The crew welcome home ceremony at Ellington Field in Houston. On Dec. 27, the astronauts donned their launch and entry suits and prepared for the return to Earth. They closed the payload bay doors and fired Discovery’s engines to bring them out of orbit. Just before landing, Kelly lowered the craft’s landing gear and Brown guided Discovery to a smooth night landing at KSC, concluding a flight of seven days, 23 hours, 11 minutes. They circled the Earth 119 times. The flight marked Discovery’s last solo flight as all its subsequent missions docked with the International Space Station. Workers at KSC began readying it for its next mission, STS-92 in October 2000.

      The Hubble Space Telescope continues to operate today, far exceeding the five-year life extension expected from the last of the servicing missions in 2009. Joined in space by the James Webb Space Telescope in 2021, the two instruments together continue to image the skies across a broad range of the electromagnetic spectrum to provide scientists with the tools to gain unprecedented insights into the universe and its formation.

      Watch the STS-103 crew narrate a video of their Hubble servicing mission.
      View the full article
    • By European Space Agency
      Video: 00:10:27 In 1975, 10 European countries came together with a vision to collaborate on key space activities: science and astronomy, launch capabilities and space applications: the European Space Agency, ESA, was born.
      In 2025, we mark half a century of joint European achievement – filled with firsts and breakthroughs in science, exploration and technology, and the space infrastructure and economy that power Europe today.
       
      During the past five decades ESA has grown, developing ever bolder and bigger projects and adding more Member States, with Slovenia joining as the latest full Member State in January.
       
      We’ll also celebrate the 50th anniversary of ESA’s Estrack network, 30 years of satellite navigation in Europe and 20 years since ESA launched the first demonstration satellite Giove-A which laid the foundation for the EU’s own satnav constellation Galileo. Other notable celebrations are the 20th anniversary of ESA’s Business Incubation Centres, or BICs, and the 30th year in space for SOHO, the joint ESA and NASA Solar and Heliospheric Observatory.
       
      Sadly though, 2025 will mean end of science operations for Integral and Gaia. Integral, ESA's gamma-ray observatory has exotic objects in space since 2002 and Gaia concludes a decade of mapping the stars. But as some space telescopes retire, another one provides its first full data release. Launched in 2023, we expect Euclid’s data release early in the new year.
       
      Launch-wise, we’re looking forward to Copernicus Sentinel-4 and -5 (Sentinel-4 will fly on an MTG-sounder satellite and Sentinel-5 on the MetOp-SG-A1 satellite), Copernicus Sentinel-1D, Sentinel-6B and Biomass. We’ll also launch the SMILE mission, or Solar wind Magnetosphere Ionosphere Link Explorer, a joint mission with the Chinese academy of science.
       
      The most powerful version of Europe’s new heavy-lift rocket, Ariane 6, is set to fly operationally for the first time in 2025. With several European commercial launcher companies planning to conduct their first orbital launches in 2025 too, ESA is kicking off the European Launcher Challenge to support the further development of European space transportation industry.
       
      In human spaceflight, Polish ESA project astronaut Sławosz Uznański will fly to the ISS on the commercial Axiom-4 mission. Artemis II will be launched with the second European Service Module, on the first crewed mission around the Moon since 1972.
      The year that ESA looks back on a half century of European achievement will also be one of key decisions on our future. At the Ministerial Council towards the end of 2025, our Member States will convene to ensure that Europe's crucial needs, ambitions and the dreams that unite us in space become reality.
      So, in 2025, we’ll celebrate the legacy of those who came before but also help establish a foundation for the next 50 years. Join us as we look forward to a year that honours ESA’s legacy and promises new milestones in space.
      View the full article
  • Check out these Videos

×
×
  • Create New...