Jump to content

Laser Instrument on NASA’s LRO Successfully ‘Pings’ Indian Moon Lander


Recommended Posts

  • Publishers
Posted

5 min read

Laser Instrument on NASA’s LRO Successfully ‘Pings’ Indian Moon Lander

For the first time at the Moon, a laser beam was transmitted and reflected between an orbiting NASA spacecraft and an Oreo-sized device on ISRO’s (Indian Space Research Organisation) Vikram lander on the lunar surface. The successful experiment opens the door to a new style of precisely locating targets on the Moon’s surface.

At 3 p.m. EST on Dec. 12, 2023, NASA’s LRO (Lunar Reconnaissance Orbiter) pointed its laser altimeter instrument toward Vikram. The lander was 62 miles, or 100 kilometers, away from LRO, near Manzinus crater in the Moon’s South Pole region, when LRO transmitted laser pulses toward it. After the orbiter registered light that had bounced back from a tiny NASA retroreflector aboard Vikram, NASA scientists knew their technique had finally worked.

close up image of the Moon with craters visible. A white square has been placed on the image to show the Chandrayaan-3 landing site
ISRO’s (Indian Space Research Organization) Vikram lander, with a NASA retroreflector on it, touched down on the Moon on Aug. 23, 2023. The camera aboard NASA’s LRO (Lunar Reconnaissance Orbiter) took this picture four days later. The lander is in the center of the image, its dark shadow visible against the bright halo around it. The halo formed after rocket plume interacted with the fine-grained regolith (similar to soil) on the Moon’s surface. The image shows an area that’s 1 mile, or 1.7 kilometers, wide.
NASA’s Goddard Space Flight Center/Arizona State University

Sending laser pulses toward an object and measuring how long it takes the light to bounce back is a commonly used way to track the locations of Earth-orbiting satellites from the ground. But using the technique in reverse – to send laser pulses from a moving spacecraft to a stationary one to determine its precise location – has many applications at the Moon, scientists say.

“We’ve showed that we can locate our retroreflector on the surface from the Moon’s orbit,” said Xiaoli Sun, who led the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, that developed the retroreflector on Vikram as part of a partnership between NASA and ISRO. “The next step is to improve the technique so that it can become routine for missions that want to use these retroreflectors in the future.”

Only 2 inches, or 5 centimeters, wide, NASA’s tiny but mighty retroreflector, called a Laser Retroreflector Array, has eight quartz-corner-cube prisms set into a dome-shaped aluminum frame. The device is simple and durable, scientists say, requiring neither power nor maintenance, and can last for decades. Its configuration allows the retroreflector to reflect light coming in from any direction back to its source.

small, round, gold instrument with eight large circles
Only 2 inches, or 5 centimeters, wide, NASA’s Laser Retroreflector Array has eight quartz-corner-cube prisms set into a dome-shaped aluminum frame. This configuration allows the device to reflect light coming in from any direction back to its source.
NASA’s Goddard Space Flight Center

Retroreflectors can be used for many applications in science and exploration and, indeed, have been in use at the Moon since the Apollo era. By reflecting light back to Earth, the suitcase-size retroreflectors revealed that the Moon is moving away from our planet at a rate of 1.5 inches (3.8 centimeters) per year.

This new generation of tiny retroreflectors has even more applications than their larger predecessors. On the International Space Station, they’re used as precision markers that help cargo-delivery spacecraft dock autonomously.

In the future, they could guide Artemis astronauts to the surface in the dark, for example, or mark the locations of spacecraft already on the surface, helping astronauts or uncrewed spacecraft land next to them.

But there’s more work to do before retroreflectors can light up the Moon. The biggest hurdle to their immediate adoption is that LRO’s altimeter, which has operated for 13 years beyond its primary mission, is the only laser instrument orbiting the Moon for now. But the instrument wasn’t designed to pinpoint a target; since 2009, the altimeter – called LOLA – has been responsible for mapping the Moon’s topography to prepare for missions to the surface.

“We would like LOLA to point to this Oreo-sized target and hit it every time, which is hard,” said Daniel Cremons, a NASA Goddard scientist who works with Sun. It took the altimeter eight tries to contact Vikram’s retroreflector.

LOLA works by dispatching five laser beams toward the Moon and measuring how long it takes each one to bounce back (the quicker the light returns, the less distance between LOLA and the surface, and thus the higher the elevation in that area). Each laser beam covers an area 32 feet, or 10 meters, wide, from a 62-mile, or 100-kilometer, altitude. Because there are large gaps between the beams, there is only a small chance that the laser pulse can contact a retroreflector during each pass of the lunar orbiter over the lander.

Altimeters are great for detecting craters, rocks, and boulders to create global elevation maps of the Moon. But they aren’t ideal for pointing to within one-hundredth of a degree of a retroreflector, which is what’s required to consistently achieve a ping. A future laser that slowly and continuously rakes the surface without any gaps in coverage would help tiny retroreflectors meet their potential.

For now, the team behind NASA’s miniature retroreflectors will continue to use LRO’s laser altimeter to help refine the position of targets on the surface, especially landers.

Several NASA retroreflectors are slated to fly aboard public and private Moon landers, including one on JAXA’s (Japan Aerospace Exploration Agency) SLIM lander, due to land on the Moon on Jan. 19, 2024, and one built by Intuitive Machines, a private company scheduled to launch its spacecraft to the Moon in mid-February. Intuitive Machines will carry six NASA payloads, including the retroreflector, under NASA’s Commercial Lunar Payload Services (CLPS) initiative.

Lonnie Shekhtman
NASA’s Goddard Space Flight CenterGreenbelt, MD

Media contact:
Nancy Neal Jones,

NASA’s Goddard Space Flight Center, Greenbelt, MD

Share

Details

Last Updated
Jan 18, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 Min Read Building a Lunar Network: Johnson Tests Wireless Technologies for the Moon 
      From left, Johnson Exploration Wireless Laboratory (JEWL) Software Lead William Dell; Lunar 3GPP Principal Investigator Raymond Wagner; JEWL intern Harlan Phillips; and JEWL Lab Manager Chatwin Lansdowne. Credits: Nevada Space Proving Grounds (NSPG) NASA engineers are strapping on backpacks loaded with radios, cameras, and antennas to test technology that might someday keep explorers connected on the lunar surface. Their mission: test how astronauts on the Moon will stay connected during Artemis spacewalks using 3GPP (LTE/4G and 5G) and Wi-Fi technologies. 
      It’s exciting to bring lunar spacewalks into the 21st century with the immersive, high-definition experience that will make people feel like they’re right there with the astronauts.
      Raymond Wagner
      NASA’s Lunar 3GPP Project Principal Investigator
      A NASA engineer tests a backpack-mounted wireless communications system in the Nevada desert, simulating how astronauts will stay connected during Artemis lunar spacewalks. NSPG With Artemis, NASA will establish a long-term presence at the Moon, opening more of the lunar surface to exploration than ever before. This growth of lunar activity will require astronauts to communicate seamlessly with each other and with science teams back on Earth.  
      “We’re working out what the software that uses these networks needs to look like,” said Raymond Wagner, principal investigator in NASA’s Lunar 3GPP project and member of Johnson Space Center’s Exploration Wireless Laboratory (JEWL) in Houston. “We’re prototyping it with commercial off-the-shelf hardware and open-source software to show what pieces are needed and how they interact.” 
      Carrying a prototype wireless network pack, a NASA engineer helps test wireless 4G and 5G technologies that could one day keep Artemis astronauts connected on the Moon. NSPG The next big step comes with Artemis III, which will land a crew on the Moon and carry a 4G/LTE demonstration to stream video and audio from the astronauts on the lunar surface. 
       The vision goes further. “Right now the lander or rover will host the network,” Wagner said. “But if we go to the Moon to stay, we may eventually want actual cell towers. The spacesuit itself is already becoming the astronaut’s cell phone, and rovers could act as mobile hotspots. Altogether, these will be the building blocks of communication on the Moon.” 
      Team members from NASA’s Avionics Systems Laboratory at Johnson Space Center in Houston.NASA/Sumer Loggins Back at Johnson, teams are simulating lunar spacewalks, streaming video, audio, and telemetry over a private 5G network to a mock mission control. The work helps engineers refine how future systems will perform in challenging environments. Craters, lunar regolith, and other terrain features all affect how radio signals travel — lessons that will also carry over to Mars. 
      For Wagner, the project is about shaping how humanity experiences the next era of exploration. “We’re aiming for true HD on the Moon,” he said. “It’s going to be pretty mind-blowing.” 
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Sep 18, 2025 Related Terms
      Johnson Space Center Artemis Explore More
      3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 2 months ago 4 min read Mark Cavanaugh: Integrating Safety into the Orion Spacecraft 
      Article 2 months ago 3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools
      Article 6 months ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
      SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
      Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
      “While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
      Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
      The Artemis II rocket includes an improved navigation system compared to Artemis I.  Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
      An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
      The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
      Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
      Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
      To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
      Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
      These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
      The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
      2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
      Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      Views of the Moon - Gorgeous Moon Video with Moon Facts!
    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By NASA
      3 min read
      Weird Ways to Observe the Moon
      Sun Funnels in action! Starting clockwise from the bottom left, a standalone Sun Funnel; attached to a small refractor to observe the transit of Mercury in 2019; attached to a large telescope in preparation for evening lunar observing; projection of the Moon on a funnel from a medium-size scope (5 inches). Night Sky Network International Observe the Moon Night is on October 4, 2025, this year– but you can observe the Moon whenever it’s up, day or night! While binoculars and telescopes certainly reveal incredible details of our neighbor’s surface, bringing out dark seas, bright craters, and numerous odd fissures and cracks, these tools are not the only way to observe details about our Moon. There are more ways to observe the Moon than you might expect, just using common household materials.
      Put on a pair of sunglasses, especially polarized sunglasses! You may think this is a joke, but the point of polarized sunglasses is to dramatically reduce glare, and so they allow your eyes to pick out some lunar details! Surprisingly, wearing sunglasses even helps during daytime observations of the Moon.
      One unlikely tool is the humble plastic bottle cap! John Goss from the Roanoke Valley Astronomical Society shared these directions on how to make your own bottle cap lunar viewer, which was suggested to him by Fred Schaaf many years ago as a way to also view the thin crescent of Venus when close to the Sun:
      “The full Moon is very bright, so much that details are overwhelmed by the glare. Here is an easy way to see more! Start by drilling a 1/16-inch (1.5 mm) diameter hole in a plastic soft drink bottle cap. Make sure it is an unobstructed, round hole.  Now look through the hole at the bright Moon. The image brightness will be much dimmer than normal – over 90% dimmer – reducing or eliminating any lunar glare. The image should also be much sharper because the bottle cap blocks light from entering the outer portion of your pupil, where imperfections of the eye’s curving optical path likely lie.” Many report seeing a startling amount of lunar detail!
      You can project the Moon! Have you heard of a “Sun Funnel”? It’s a way to safely view the Sun by projecting the image from an eyepiece to fabric stretched across a funnel mounted on top. It’s easy to make at home, too – directions are here: bit.ly/sunfunnel. Depending on your equipment, a Sun Funnel can view the Moon as well as the Sun– a full Moon gives off more than enough light to project from even relatively small telescopes. Large telescopes will project the full Moon and its phases with varying levels of detail; while not as crisp as direct eyepiece viewing, it’s still an impressive sight! You can also mount your smartphone or tablet to your eyepiece for a similar Moon-viewing experience, but the funnel doesn’t need batteries.
      Of course, you can join folks in person or online to celebrate our Moon on October 4, 2025, with International Observe the Moon Night – find details at moon.nasa.gov/observe.
      Originally posted by Dave Prosper: September 2021
      Last Updated by Kat Troche: March 2025
      View the full article
  • Check out these Videos

×
×
  • Create New...