Jump to content

Wideband Technology


NASA

Recommended Posts

  • Publishers

Overview

As NASA’s Tracking and Data Relay Satellite (TDRS) constellation approaches retirement, partnerships with commercial industry will play a critical role in the development of future space communications and navigation architecture. Over the next decade, NASA missions will transition towards adopting commercial space-based relay services to fulfil their near-Earth communications needs.

The Space Communications and Navigation (SCaN) program is working to ensure that future missions will continue to have reliable, resilient space and ground communications and navigation infrastructure. Wideband polylingual terminals could become a key technology supporting that infrastructure, by providing seamless roaming capabilities that could allow missions to receive communication signals from multiple SATCOM service providers through the use of software defined radios (SDR). Developed over the last decade, SDR technology enables waveform change in-orbit, allowing for the adoption of new and evolving commercial services by missions as they become available.

Near Space Network antennas at the Alaska Satellite Facility in Fairbanks, Alaska.
Near Space Network antennas at the Alaska Satellite Facility in Fairbanks, Alaska.
NASA

Interoperability to Advance Science 

The goal of NASA’s Wideband User Terminal project is to provide interoperability between government and commercial owned networks for near-Earth services in the near-term by leveraging traditional NASA assets with new commercial infrastructure.  

Cellphone providers adopted roaming technology long ago, allowing devices to jump from network to network without interrupting service. Wideband terminals aim to enable similar roaming capabilities for space communications applications, a capability that has not been available to missions in the past.  

Wideband interoperability technology was developed and tested at NASA’s Glenn Research Center in Cleveland, Ohio, where the first successful test of roaming between multiple network providers was conducted in 2021. 

Commercialization Transition 

Interoperability between industry and government owned network providers could play a key role in NASA’s transition towards commercialization. NASA has relied on the TDRS system to provide near-constant communication links between the ground and satellites in low-Earth orbit for almost 40 years, but the infrastructure was not originally designed for interoperability between networks.  

SCaN is developing wideband technology to help the mission user community transition towards relying on commercial providers, by providing the safeguard option of connecting to the reliable TDRS network while private industry continue to develop and mature their space-based services over the next decade. 

There are numerous potential benefits of providing missions with interoperability between NASA’s legacy TDRS networks and new commercial satcom services, including reducing the risk of data loss and communication delays. Providing missions with a selection of network providers can also help avoid vendor lock-in and keep mission execution on schedule when unexpected circumstances arise.

PExT Demonstration

The Polylingual Experimental Terminal is the focus of this photograph. We see a white antenna dish, approximately 0.6-meters in size, facing the ceiling, sitting on a golden platform. Silver wires resembling tinfoil are shown protruding beneath the antenna dish. The terminal sits on top of a grey table inside a white laboratory.
The Polylingual Experimental Terminal at Johns Hopkins University​
Johns Hopkins University Applied Physics Laboratory

NASA’s Wideband Terminal Project is collaborating with Johns Hopkins University Applied Physics Laboratory to test the prototype Polylingual Experimental Terminal (PExT). Mission objectives include demonstrating interoperability through contact and link management, and forward and return link data flow while roaming between NASA’s TDRS network and three commercial relay networks. The PExT Wideband Terminal will be the first flight demonstration of roaming across government and commercial networks from a single terminal. 

PExT will be integrated with a York Space Systems S-class Bus and launched on the SpaceX Falcon 9 Transporter-11 flight, currently planned for June 2024.  

The terminal will demonstrate various mission scenarios during its six-month testing period, including: 

  • self-pointing capabilities 
  • long-term schedule execution  
  • intra-/inter-network link handoff 
  • waveform adaptation and reloading 
  • command stack protection (crypto) 
  • link fault recovery 

The Wideband Project is currently providing opportunities for the mission user community to take part in extended operation experiments using Wideband technology. Please contact Wideband Technology Lead marie.t.piasecki@nasa.gov for more information. 

PExT Key Features 

  • Wide frequency covers the entire range of commercial and government Ka-Band allocations, including 17.7 GHz to 23.55 GHz Forward, and 27 GHz to 31 GHz Return   
  • Initial data rates reach up to 90 Mbps Forward and 375 Mbps Return. Future data rates are projected up to 490 Mbps Forward and 1 Gbps Return 
  • Supports both NASA and commercial waveforms – including DVB-S2 and CCSDS TDRSS  
  • The body-mounted 0.6-meter antennas are scalable for other missions 
  • Effective Isotropic Radiated Power (EIRP) 46.21 dBW minimum 
  • Gain to Noise G/T ration approximately 6dB/K 
Team members from the Polylingual Experimental Terminal project and Applied Physics Laboratory stand next to PExT after preparing the terminal for vibration testing.
Team members from the Polylingual Experimental Terminal project and Applied Physics Laboratory stand next to PExT after preparing the terminal for vibration testing. 
Johns Hopkins University Applied Physics Laboratory

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become.
      “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon.
      Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather.
      “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx.
      Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes.
      The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the European Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface.
      Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf.
      Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.”
      Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said.
      Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts.
      “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division.
      Project Lead: Chris Ruf, University of Michigan
      Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More
      22 min read Summary of the Second OMI–TROPOMI Science Team Meeting


      Article


      1 hour ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      6 days ago
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 week ago
      View the full article
    • By NASA
      Credit: NASA NASA has selected Metis Technology Solutions Inc. of Albuquerque, New Mexico, to provide engineering services as well as develop and maintain software and hardware used to conduct simulations for aerospace research and development across the agency.
      The Aerospace Research, Technology, and Simulations (ARTS) contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract with an indefinite-delivery/indefinite-quantity component and has a maximum potential value of $177 million. The performance period begins Sunday, Dec. 1, 2024, with a one-year base period, and options to extend performance through November 2029.
      Under this contract, the company will support the preparation, development, operation, and maintenance of future and existing simulators, integration laboratories, aircraft research systems, simulation work areas, and aircraft research systems. The scope of work also will include the development, testing, and validation of advanced air traffic management automation tools, including, but not limited to, advanced concepts for aviation ecosystems. Work will primarily be performed at NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, as well as other agency or government locations, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      Share
      Details
      Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
      Ames Research Center Langley Research Center NASA Centers & Facilities NASA Headquarters View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Engineer Adam Gannon works on the development of Cognitive Engine-1 in the Cognitive Communications Lab at NASA’s Glenn Research Center.Credit: NASA  Automated technology developed in Cleveland has launched to space aboard the Technology Education Satellite 11 mission. The flight test aims to confirm the precision and accuracy of this new technology developed at NASA’s Glenn Research Center. 
      The Cognitive Communications Project was founded by NASA in 2016 to develop autonomous space communications systems for the agency. Autonomous systems use technology that can react to its environment to implement updates during a mission, without needing any human interaction.  
      The project first collaborated with the Technology Education Satellite (TES) program at NASA’s Ames Research Center in California’s Silicon Valley back in 2022 to launch the TES-13 CubeSat, which sent the first neuromorphic processor to space. A neuromorphic processor is a piece of technology built to act in ways that replicate how the human brain functions. Through TES-13, the cognitive team was able to test their advanced technology in space successfully for the first time.  
      Researchers at NASA’s Ames Research Center in California’s Silicon Valley assemble the Technology Education Satellite-11 CubeSat inside of a laboratory.Credit: NASA  After the success of TES-13, the team compiled each of their unique capabilities into one end-to-end system, called Cognitive Engine 1, or CE-1. CE-1 is a space and ground software system that automates normal aspects of spacecraft communications, like service scheduling and planning reliable priority-based data transfers.  
      Cognitive technology launched to space for the second time on July 3 on TES-11 aboard Firefly Aerospace’s Noise of Summer mission. TES-11 was one of eight small satellites launched during the mission. It was created as a part of the Technology Education Satellite program at NASA Ames, which organizes collaborative projects and missions that pair college and university students with NASA researchers to evaluate how new technologies work on small satellites, known as CubeSats.  
      Image of various CubeSats deployed in space from the International Space Station. Credit: NASA  TES-11 is testing the components of CE-1 that allow satellites to independently schedule time with ground stations and download data without human interaction. Results from the TES-11 mission will be used by the Cognitive Communications team to finalize their CE-1 design, to ensure that the technology is ready to be adopted by future NASA missions.  
      The Cognitive Communications Project is funded by the Space Communications and Navigation program at NASA Headquarters in Washington and managed out of NASA’s Glenn Research Center in Cleveland.  
      Return to Newsletter Explore More
      1 min read Cleveland High School Students Land STEM Career Exploration Experience 
      Article 5 mins ago 1 min read NASA Lands at National Cherry Festival 
      Article 5 mins ago 1 min read Local Creators Learn About NASA’s Iconic Logo 
      Article 5 mins ago View the full article
    • By NASA
      Michael Zanetti (ST13), Kyle Miller (EV42), and Chris Whetsel (ES52) conducted a technology demonstration and field work with the NASA JSC 5th Joint EVA Test Team (JETT-3) from 5/17-23/24, near SP Crater, Flagstaff, AZ. JETT5 tested full-up mission operations with communication to JSC-Houston, and included astronauts Kate Rubins and Andre Douglas testing ATLAS suits and 4-6 hr. planned traverses near SP-Crater – a former Apollo astronaut geology training site. The Kinematic Navigation and Cartography Knapsack (KNaCK) team members were invited to demonstrate GPS-denied navigation solutions using our person-mounted velocity-sensing LiDAR sensors that provide local position and a ground-track in addition to terrain mapping capabilities using terrain relative navigation and LiDAR SLAM algorithms. KNaCK tests were designed to provide a real-time ground-track to the Joint Augmented Reality (JointAR/JARVIS) heads-up display suit from NASA JSC. Our technology demo had Astronaut Kate Rubins in the JARVIS suit receiving real-time updates of her traverse path. KNaCK provided flawless positioning for 75% of the traverse, with ~2 m local accuracy compared to GPS. The remaining 25% of the run was impacted by algorithm issues in perfectly flat terrain (a rare issue, likely only on Earth, causing 3 restarts to reacquire an accurate ground-track). Overall, the KNaCK tech demo mission was a big success, with Kate Rubins noting Navigation accuracy reducing mental overhead and decreasing traverse time to sampling stations “Definitely giving me what I need. Pretty Cool!”
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA used its remotely piloted Ikhana aircraft to test technology it helped develop or recommended to the U.S. Forest Service, including a system to send sensor data to decision makers on the ground in near real time.Credit: NASA It’s not easy to predict the path of forest fires—a lot depends on constantly changing factors like wind. But it is crucial to be as accurate as possible because the lives, homes, and businesses of the tens of thousands of people living and working in fire-prone areas depend on the reliability of these predictions. Sensors mounted on airplanes or drones that provide a picture of the fire from above are an important tool, and that’s where NASA comes in. 

      In partnership with the U.S. Forest Service, local and state firefighting agencies, and the Bureau of Land Management, NASA plays a pivotal role in battling infernos. The agency’s extensive experience and technical expertise in remote sensing technology have significantly improved the speed and accuracy of information relayed to firefighting decision-makers.

      According to Don Sullivan, who specialized in information technology design at the time, the Airborne Science Program at NASA’s Ames Research Center in Silicon Valley, California, was integral to that effort.
      In the 1990s, NASA began a project to adapt uncrewed aircraft for environmental research. The researchers at Ames wanted to ensure the technology would be useful to the broadest possible spectrum of potential end users. One concept tested during the project was sending data in real-time to the ground via communications links installed on the aircraft.

      That link sent data faster and to multiple recipients at once—not just the team on the fire front line, but also the commanders organizing the teams and decision makers looking at the big picture across the entire region throughout the fire season, explained Sullivan.

      For the Forest Service, this was a much-needed upgrade to the original system on their crewed jets: rolling up a printout and later thumb drives with thermal sensor data placed into a plastic tube attached to a parachute and dropped out of the airplane. NASA’s remotely piloted aircraft called Ikhana tested the technology, and it’s still used by the agency to collect data on wildfires.

      Since the introduction of this technology, wildfires have gotten bigger, burn hotter, and set new records every year. But in California in 2008, this technology helped fight what was then the worst fire season on record. A NASA test flight using a data downlink system provided updated information to the incident managers that was crucial in determining where to send firefighting resources and whether a full evacuation of the town of Paradise was needed.

      Without that timely information, said Sullivan, “there likely would have been injuries and certainly property damage that was worse than it turned out to be.”
      Read More Share
      Details
      Last Updated Jul 31, 2024 Related Terms
      General Explore More
      5 min read NASA Public Engagement Specialist Loves to Inspire Kids with STEM
      Article 2 hours ago 3 min read NASA’s First-Ever Quantum Memory Made at Glenn Research Center
      Article 5 hours ago 8 min read Overview for NASA’s Northrop Grumman 21st Commercial Resupply Mission
      NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:29 a.m. EDT on Saturday,…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Earth Observations
      Fire and Air Quality
      Climate Change
      Drones & You
      View the full article
  • Check out these Videos

×
×
  • Create New...