Jump to content

Wideband Technology


NASA

Recommended Posts

  • Publishers

Overview

As NASA’s Tracking and Data Relay Satellite (TDRS) constellation approaches retirement, partnerships with commercial industry will play a critical role in the development of future space communications and navigation architecture. Over the next decade, NASA missions will transition towards adopting commercial space-based relay services to fulfil their near-Earth communications needs.

The Space Communications and Navigation (SCaN) program is working to ensure that future missions will continue to have reliable, resilient space and ground communications and navigation infrastructure. Wideband polylingual terminals could become a key technology supporting that infrastructure, by providing seamless roaming capabilities that could allow missions to receive communication signals from multiple SATCOM service providers through the use of software defined radios (SDR). Developed over the last decade, SDR technology enables waveform change in-orbit, allowing for the adoption of new and evolving commercial services by missions as they become available.

Near Space Network antennas at the Alaska Satellite Facility in Fairbanks, Alaska.
Near Space Network antennas at the Alaska Satellite Facility in Fairbanks, Alaska.
NASA

Interoperability to Advance Science 

The goal of NASA’s Wideband User Terminal project is to provide interoperability between government and commercial owned networks for near-Earth services in the near-term by leveraging traditional NASA assets with new commercial infrastructure.  

Cellphone providers adopted roaming technology long ago, allowing devices to jump from network to network without interrupting service. Wideband terminals aim to enable similar roaming capabilities for space communications applications, a capability that has not been available to missions in the past.  

Wideband interoperability technology was developed and tested at NASA’s Glenn Research Center in Cleveland, Ohio, where the first successful test of roaming between multiple network providers was conducted in 2021. 

Commercialization Transition 

Interoperability between industry and government owned network providers could play a key role in NASA’s transition towards commercialization. NASA has relied on the TDRS system to provide near-constant communication links between the ground and satellites in low-Earth orbit for almost 40 years, but the infrastructure was not originally designed for interoperability between networks.  

SCaN is developing wideband technology to help the mission user community transition towards relying on commercial providers, by providing the safeguard option of connecting to the reliable TDRS network while private industry continue to develop and mature their space-based services over the next decade. 

There are numerous potential benefits of providing missions with interoperability between NASA’s legacy TDRS networks and new commercial satcom services, including reducing the risk of data loss and communication delays. Providing missions with a selection of network providers can also help avoid vendor lock-in and keep mission execution on schedule when unexpected circumstances arise.

PExT Demonstration

The Polylingual Experimental Terminal is the focus of this photograph. We see a white antenna dish, approximately 0.6-meters in size, facing the ceiling, sitting on a golden platform. Silver wires resembling tinfoil are shown protruding beneath the antenna dish. The terminal sits on top of a grey table inside a white laboratory.
The Polylingual Experimental Terminal at Johns Hopkins University​
Johns Hopkins University Applied Physics Laboratory

NASA’s Wideband Terminal Project is collaborating with Johns Hopkins University Applied Physics Laboratory to test the prototype Polylingual Experimental Terminal (PExT). Mission objectives include demonstrating interoperability through contact and link management, and forward and return link data flow while roaming between NASA’s TDRS network and three commercial relay networks. The PExT Wideband Terminal will be the first flight demonstration of roaming across government and commercial networks from a single terminal. 

PExT will be integrated with a York Space Systems S-class Bus and launched on the SpaceX Falcon 9 Transporter-11 flight, currently planned for June 2024.  

The terminal will demonstrate various mission scenarios during its six-month testing period, including: 

  • self-pointing capabilities 
  • long-term schedule execution  
  • intra-/inter-network link handoff 
  • waveform adaptation and reloading 
  • command stack protection (crypto) 
  • link fault recovery 

The Wideband Project is currently providing opportunities for the mission user community to take part in extended operation experiments using Wideband technology. Please contact Wideband Technology Lead marie.t.piasecki@nasa.gov for more information. 

PExT Key Features 

  • Wide frequency covers the entire range of commercial and government Ka-Band allocations, including 17.7 GHz to 23.55 GHz Forward, and 27 GHz to 31 GHz Return   
  • Initial data rates reach up to 90 Mbps Forward and 375 Mbps Return. Future data rates are projected up to 490 Mbps Forward and 1 Gbps Return 
  • Supports both NASA and commercial waveforms – including DVB-S2 and CCSDS TDRSS  
  • The body-mounted 0.6-meter antennas are scalable for other missions 
  • Effective Isotropic Radiated Power (EIRP) 46.21 dBW minimum 
  • Gain to Noise G/T ration approximately 6dB/K 
Team members from the Polylingual Experimental Terminal project and Applied Physics Laboratory stand next to PExT after preparing the terminal for vibration testing.
Team members from the Polylingual Experimental Terminal project and Applied Physics Laboratory stand next to PExT after preparing the terminal for vibration testing. 
Johns Hopkins University Applied Physics Laboratory

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
    • By NASA
      Clayton P. Turner, associate administrator for Space Technology Mission DirectorateCredit: NASA Clayton P. Turner will serve as the associate administrator of the Space Technology Mission Directorate (STMD) at the agency’s headquarters in Washington, NASA Administrator Bill Nelson announced Monday. His appointment is effective immediately.
      Turner has served as the acting associate administrator of STMD since July. In this role, Turner will continue to oversee executive leadership, strategic planning, and overall management of all technology maturation and demonstration programs executed from the directorate enabling critical space focused technologies that deliver today and help create tomorrow.
      “Under Turner’s skilled and steady hand, the Space Technology Mission Directorate will continue to do what it does best: help NASA push the boundaries of what’s possible and drive American leadership in space,” said NASA Administrator Bill Nelson. “I look forward to what STMD will achieve under Turner’s direction.”
      As NASA embarks on the next era of space exploration, STMD leverages partnerships to advance technologies and test new capabilities helping the agency develop a sustainable presence on the Moon and beyond. As associate administrator of STMD, Turner will plan, coordinate, and evaluate the mission directorate’s full range of programs and activities, including budget formulation and execution, as well as represent the programs to officials within and outside the agency.
      Previously, Turner served as NASA Langley Research Center Director since September 2019 and has been with the agency for more than 30 years. He has held several roles at NASA Langley, including engineering director, associate center director, and deputy center director. Throughout his NASA career, he has worked on many projects for the agency, including: the Earth Science Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Project; the materials technology development Gas Permeable Polymer Materials Project; the Space Shuttle Program’s Return to Flight work; the flight test of the Ares 1-X rocket; the flight test of the Orion Launch Abort System; and the entry, descent, and landing segment of the Mars Science Laboratory.
      In recognition of his commitment to the agency and engineering, Turner has received many prestigious awards, such as the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Engineering Achievement Medal. He is also an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a Board of Trustees member of his alma mater, Rochester Institute of Technology.
      NASA Glenn Research Center Deputy Director, Dawn Schaible, became acting Langley Center Director in July and will continue to serve in this role. At NASA Langley, Schaible leads a skilled group of more than 3,000 civil servant and contractor scientists, researchers, engineers, and support staff, who work to advance aviation, expand understanding of Earth’s atmosphere, and develop technology for space exploration.
      For more about Turner’s experience, visit his full biography online at:
      https://go.nasa.gov/48UmkmS
      -end-
      Meira Bernstein / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / jasmine.s.hopkins@nasa.gov
      Share
      Details
      Last Updated Nov 18, 2024 LocationNASA Headquarters Related Terms
      Space Technology Mission Directorate View the full article
    • By NASA
      MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become.
      “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon.
      Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather.
      “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx.
      Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes.
      The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the European Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface.
      Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf.
      Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.”
      Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said.
      Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts.
      “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division.
      Project Lead: Chris Ruf, University of Michigan
      Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More
      22 min read Summary of the Second OMI–TROPOMI Science Team Meeting


      Article


      1 hour ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      6 days ago
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 week ago
      View the full article
    • By NASA
      Credit: NASA NASA has selected Metis Technology Solutions Inc. of Albuquerque, New Mexico, to provide engineering services as well as develop and maintain software and hardware used to conduct simulations for aerospace research and development across the agency.
      The Aerospace Research, Technology, and Simulations (ARTS) contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract with an indefinite-delivery/indefinite-quantity component and has a maximum potential value of $177 million. The performance period begins Sunday, Dec. 1, 2024, with a one-year base period, and options to extend performance through November 2029.
      Under this contract, the company will support the preparation, development, operation, and maintenance of future and existing simulators, integration laboratories, aircraft research systems, simulation work areas, and aircraft research systems. The scope of work also will include the development, testing, and validation of advanced air traffic management automation tools, including, but not limited to, advanced concepts for aviation ecosystems. Work will primarily be performed at NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, as well as other agency or government locations, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      Share
      Details
      Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
      Ames Research Center Langley Research Center NASA Centers & Facilities NASA Headquarters View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Engineer Adam Gannon works on the development of Cognitive Engine-1 in the Cognitive Communications Lab at NASA’s Glenn Research Center.Credit: NASA  Automated technology developed in Cleveland has launched to space aboard the Technology Education Satellite 11 mission. The flight test aims to confirm the precision and accuracy of this new technology developed at NASA’s Glenn Research Center. 
      The Cognitive Communications Project was founded by NASA in 2016 to develop autonomous space communications systems for the agency. Autonomous systems use technology that can react to its environment to implement updates during a mission, without needing any human interaction.  
      The project first collaborated with the Technology Education Satellite (TES) program at NASA’s Ames Research Center in California’s Silicon Valley back in 2022 to launch the TES-13 CubeSat, which sent the first neuromorphic processor to space. A neuromorphic processor is a piece of technology built to act in ways that replicate how the human brain functions. Through TES-13, the cognitive team was able to test their advanced technology in space successfully for the first time.  
      Researchers at NASA’s Ames Research Center in California’s Silicon Valley assemble the Technology Education Satellite-11 CubeSat inside of a laboratory.Credit: NASA  After the success of TES-13, the team compiled each of their unique capabilities into one end-to-end system, called Cognitive Engine 1, or CE-1. CE-1 is a space and ground software system that automates normal aspects of spacecraft communications, like service scheduling and planning reliable priority-based data transfers.  
      Cognitive technology launched to space for the second time on July 3 on TES-11 aboard Firefly Aerospace’s Noise of Summer mission. TES-11 was one of eight small satellites launched during the mission. It was created as a part of the Technology Education Satellite program at NASA Ames, which organizes collaborative projects and missions that pair college and university students with NASA researchers to evaluate how new technologies work on small satellites, known as CubeSats.  
      Image of various CubeSats deployed in space from the International Space Station. Credit: NASA  TES-11 is testing the components of CE-1 that allow satellites to independently schedule time with ground stations and download data without human interaction. Results from the TES-11 mission will be used by the Cognitive Communications team to finalize their CE-1 design, to ensure that the technology is ready to be adopted by future NASA missions.  
      The Cognitive Communications Project is funded by the Space Communications and Navigation program at NASA Headquarters in Washington and managed out of NASA’s Glenn Research Center in Cleveland.  
      Return to Newsletter Explore More
      1 min read Cleveland High School Students Land STEM Career Exploration Experience 
      Article 5 mins ago 1 min read NASA Lands at National Cherry Festival 
      Article 5 mins ago 1 min read Local Creators Learn About NASA’s Iconic Logo 
      Article 5 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...