Jump to content

Robot Team Builds High-Performance Digital Structure for NASA


NASA

Recommended Posts

  • Publishers
A NASA researcher closely examines a small robot that bolts building blocks to a structure.
Research engineer Christine Gregg inspects a Mobile Metamaterial Internal Co-Integrator (MMIC-I) builder robot. These simple robots are part of a hardware and software system NASA researchers are developing to autonomously build and maintain high-performance large space structures comprised of building blocks. MMIC-I works by climbing though the interior space of building blocks and bolting them to the rest of the structure during a build or unbolting during disassembly.
NASA/Dominic Hart

If they build it, we will go – for the long-term.

Future long-duration and deep-space exploration missions to the Moon, Mars, and beyond will require a way to build large-scale infrastructure, such as solar power stations, communications towers, and habitats for crew. To sustain a long-term presence in deep space, NASA needs the capability to construct and maintain these systems in place, rather than sending large pre-assembled hardware from Earth. 

NASA’s Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) team is developing a hardware and software system to meet that need. The system uses different types of inchworm-like robots that can assemble, repair, and reconfigure structural materials for a variety of large-scale hardware systems in space. The robots can do their jobs in orbit, on the lunar surface, or on other planets – even before humans arrive.

Researchers at NASA’s Ames Research Center in California’s Silicon Valley recently performed a laboratory demonstration of the ARMADAS technology and analyzed the system’s performance. During the tests, three robots worked autonomously as a team to build a meters-scale shelter structure – roughly the size of a shed – using hundreds of building blocks.  The team published their results today in Science Robotics.

Two NASA researchers watch small robots assembling building blocks into a structure in a laboratory.
Research engineer Taiwo Olatunde, left, and intern Megan Ochalek, right, observe as robots move and assemble composite building blocks into a structure. The robots worked on their own to complete the structure in a little over 100 hours of operations. To facilitate the team’s watchful monitoring of the robots’ performance, the demonstration was split over several weeks of regular working hours.
NASA/Dominic Hart

“The ground assembly experiment demonstrated crucial parts of the system: the scalability and reliability of the robots, and the performance of structures they build. This type of test is key for maturing the technology for space applications,” said Christine Gregg, ARMADAS chief engineer at NASA Ames.  

The high strength, stiffness, and low mass of the structural product is comparable to today’s highest-performance structures, like long bridges, aircraft wings, and space structures – such as the International Space Station’s trusses. Such performance is a giant leap for the field of robotically reconfigurable structures. 

A small robot, holds a building block that is roughly ball-shaped but has flat faces. The robot stands atop a structure built of these building blocks.
A Scaling Omnidirectional Lattice Locomoting Explorer (SOLL-E) builder robot carries a soccer ball-sized building block called a voxel – short for volumetric pixel – during a demonstration of NASA’s Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) technology at NASA’s Ames Research Center in Silicon Valley. The voxels are made of strong and lightweight composite materials formed into a shape called a cuboctahedron.
NASA/Dominic Hart

Programmable, Reconfigurable Structures

“‘Mission adaptive’ capabilities allow a system to be reused for multiple purposes, including ones that adopt hardware from completed activities, decreasing the cost of new missions,” said Kenny Cheung, ARMADAS principal investigator at NASA Ames. “‘Digital assembly systems’ refers to the use of discrete building blocks, as a physical analog to the digital systems that we use today.” 

Many people use digital systems to view photos or text on a display, like a smartphone screen. A digital image uses a small set of pixel types to form almost any image on a high-resolution display. You can think of pixels as building blocks for 2D space. The ARMADAS system can use a small set of 3D building blocks – called voxels, short for volumetric pixels – to form almost any structure. Just like digital images, the ARMADAS system is ‘programmable,’ meaning that it can self-reconfigure to meet evolving needs, with the help of the robots. 

The voxels used in the demonstration were made of strong and lightweight composite materials formed into a shape called a cuboctahedron. The voxels resemble a wire-frame soccer ball with flat faces and highly precise geometry. 

“It’s surprising how strong and stiff these systems are, given how they look,” said Cheung. “Making large structures from small building blocks allows us to use good materials at the lowest cost. The size of the structures that can be made is only limited by the number of building blocks that can be supplied.”

This kind of scalability is revolutionary in comparison to current methods of fabricating spacecraft in factories, or even 3D printing.

acd22-0057-086.jpg?w=2048
A Scaling Omnidirectional Lattice Locomoting Explorer (SOLL-E) builder robot carries a small building block called a voxel – short for volumetric pixel – as it maneuvers, stepping inchworm-style, along the exterior of a mechanical metamaterial structure, foreground, while a SOLL-E and a Mobile Metamaterial Internal Co-Integrator (MMIC-I) fastening robot attach a voxel to the structure, background. The highly predictable nature of the structure built by the robots allows them to build very precise structures that are much larger than themselves, unlike typical factory produced products.
NASA/Dominic Hart

A Reliable System Relies on Building Blocks

Building blocks are also key to the robotic system autonomy and reliability. 

“Generally, it’s very hard to develop robust autonomous robots that can operate in unstructured environments, like a typical construction site. We turn that problem on its head by making very simple and reliable robots that operate in an extremely structured lattice environment,” said Gregg.  

For the demonstration, the ARMADAS team provided plans for the structure, but they didn’t micromanage the robots’ work. Software algorithms did the job of planning the robots’ tasks. The system practiced the build sequence in simulation before the actual run started. 

While in operation, two robots – stepping inchworm style – walked on the exterior of the structure, moving one soccer ball-sized voxel at a time. One robot fetched the voxels from a supply station and passed them to the second robot that, in turn, placed each voxel on its target location. 

A third robot followed these placements, climbing though the interior space of the voxels and bolting each new voxel to the rest of the structure. 

Time-lapse showing robots, working autonomously as a team, to assemble a meters-scale shelter structure using hundreds of building blocks during a technology demonstration at NASA’s Ames Research Center in Silicon Valley. Credits: NASA

“Because the robots align each small step to the structure in what is essentially a 3D grid, simple algorithms with low computation and sensing requirements can achieve high-level autonomy goals. The system builds and error-corrects on its own with no machine vision or external means of measurement,” said Gregg. 

Future work will expand the library of voxel types that the robots work with, to include solar panels, electrical connections, shielding, and more. Each new module type will dramatically expand the possible applications because the robots can mix and match them to meet specific needs and locations. The ARMADAS team is also working on new robot capabilities, such as inspection tools, to ensure that autonomously constructed facilities are safe and sound before astronauts arrive. 

ARMADAS’ technology approach increases what we can do with equipment sent for most deep space exploration missions, and how long we can use them. When a mission completes, robots can disassemble space structures, repurpose the building blocks, and construct designs of the future.

For news media:

Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Diana Oglesby’s love for NASA began long before she started working for the agency. A native of Decatur, Texas, Oglesby knew at the age of eight that she would make NASA her future destination. That dream became a reality when Oglesby joined the agency, first as an intern and later as a NASA full-time employee, marking the beginning of a career that would span over two decades.  


      From left, Richard Jones, CCP (Commercial Crew Program) deputy program manager at NASA’s Johnson Space Center in Houston; Steve Stich, program manager for CCP; Dana Hutcherson, CCP deputy program manager at NASA’s Kennedy Space Center in Florida; and Diana Oglesby, director, Strategic Integration and Management Division, Space Operations Mission Directorate, pose with the agency’s SpaceX Crew-9 mission flag near the countdown clock at the NASA News Center at the Kennedy on Tuesday, Sept. 24, 2024.NASA/Cory S Huston Oglesby currently serves as director of the Strategic Integration and Management Division within NASA’s Space Operations Mission Directorate at NASA Headquarters. The division plays a key role in ensuring the effectiveness and efficiency of space operations, providing essential business support such as programmatic integration, strategic planning, information technology and cybersecurity leadership, stakeholder outreach, and administrative services.  

      Before her current role, Oglesby led the business management function for NASA’s Commercial Crew Program at NASA’s Kennedy Space Center in Florida. She had a front-row seat to history during NASA’s SpaceX Demo-2 mission, which successfully launched astronauts to the International Space Station in the first commercially built and operated American rocket and spacecraft, marking a significant milestone in NASA’s space exploration efforts.  

      “It was an honor of a lifetime,” she says, reflecting on her role in this historic achievement.

      Oglesby’s ability to foster teamwork and genuine care for others has been a hallmark of her career, whether serving in NASA’s Commercial Crew Program or now guiding the Strategic Integration and Management Division. 

      While reflecting on her new role as division director, Oglesby is most excited about the people. As someone who thrives on diverse activities and complex challenges, she looks forward to the strategic aspects of her role and the opportunity to lead a dynamic team helping to shape NASA’s future. 
      The future is bright. We are actively building the future now with each choice as part of the agency's strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.
      Diana Oglesby
      Director, Strategic Integration and Management Division, Space Operations Mission Directorate 
      “The future is bright,” said Oglesby. “We are actively building the future now with each choice as part of the agency’s strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.” 

      While Oglesby is deeply committed to her work, she also believes in “work-life harmony” rather than a work-life balance, by giving her attention to the sphere of life she is currently in at that moment in time. She remains ever focused on harmonizing between her NASA duties and her life outside of work, including her three children. Oglesby enjoys spending time with her family, baking, crafting, and participating in her local church and various causes to support community needs.   

      Known for her positive energy, passion, and innovation, Oglesby always seeks ways to improve systems and make a difference in whatever project she is tackling. Her attention to detail and problem-solving approach makes her an invaluable leader at NASA. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 


      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Space Operations Mission Directorate Strategic Integration and Management Division Explore More
      4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 2 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 weeks ago 3 min read Commercial Services User Group (CSUG)
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The laser that transmits between NASA’s Psyche spacecraft and Earth-based observatories for the Deep Space Optical Communications experiment successfully reaches its target thanks, in part, to a vibration isolation platform developed by Controlled Dynamics Inc., and supported by several Space Technology Mission Directorate programs. NASA/JPL-Caltech One year ago today, the future of space communications arrived at Earth as a beam of light from a NASA spacecraft nearly 10 million miles away. That’s 40 times farther than our Moon. That’s like using a laser pointer to track a moving dime from a mile away. That’s pretty precise.
      That laser — transmitted from NASA’s DSOC (Deep Space Optical Communications) technology demonstration — has continued to hit its target on Earth from record-breaking distances.
      “NASA’s Deep Space Optical Communications features many novel technologies that are needed to precisely point and track the uplink beacon and direct the downlink laser,” said Bill Klipstein, DSOC project manager at NASA’s Jet Propulsion Laboratory in Southern California.
      One of the technologies aiding that extremely precise pointing was invented by a small business and fostered by NASA for more than a decade.
      Whole Lotta Shakin’ Going On (Not!)
      Part of the challenge with the precision pointing needed for DSOC was isolating the laser from the spacecraft’s vibrations, which would nudge the beam off target. Fortunately for NASA, Controlled Dynamics Inc. (CDI), in Huntington Beach, California, offered a solution to this problem.
      The company had a platform designed to isolate orbiting experiments from vibrations caused by their host spacecraft, other payloads, crew movements, or even their own equipment. Just as the shocks on a car provide a smoother ride, the struts and actuators on CDI’s vibration isolation platform created a stable setting for delicate equipment.
      This idea needed to be developed and tested first to prove successful.
      The Path to Deep Space Success
      NASA’s Space Technology Mission Directorate started supporting the platform’s development in 2012 under its Game Changing Development program with follow-on support from the SBIR (Small Business Innovation Research) program. The technology really began to take off — pun intended — under NASA’s Flight Opportunities program. Managed out of NASA’s Armstrong Flight Research Center in Edwards, California, Flight Opportunities rapidly demonstrates promising technologies aboard suborbital rockets and other vehicles flown by commercial companies.
      Early flight tests in 2013 sufficiently demonstrated the platform’s performance, earning CDI’s technology a spot on the International Space Station in 2016. But the flight testing didn’t end there. A rapid series of flights with Blue Origin, UP Aerospace, and Virgin Galactic put the platform through its paces, including numerous boosts and thruster firings, pyrotechnic shocks, and the forces of reentry and landing.
      “Flight Opportunities was instrumental in our development,” said Dr. Scott Green, CDI’s co-founder and the platform’s principal investigator. “With five separate flight campaigns in just eight months, those tests allowed us to build up flight maturity and readiness so we could transition to deep space.”
      The vibration isolation platform developed by Controlled Dynamics Inc., and used on the Deep Space Optical Communications experiment conducted numerous tests through NASA’s Flight Opportunities program, including this flight aboard Virgin Galactic’s VSS Unity in February 2019. Virgin Galactic The culmination of NASA’s investments in CDI’s vibration isolation platform was through its Technology Demonstration Missions program, which along with NASA’s SCaN (Space Communications and Navigation) program supported NASA’s Deep Space Optical Communications.
      On Oct. 13, 2023, DSOC launched aboard the Psyche spacecraft, a mission managed by JPL. The CDI isolation platform provided DSOC with the active stabilization and precision pointing needed to successfully transmit a high-definition video of Taters the cat and other sample data from record-breaking distances in deep space.
      “Active stabilization of the flight laser transceiver is required to help the project succeed in its goal to downlink high bandwidth data from millions of miles,” said Klipstein. “To do this, we need to measure our pointing and avoid bumping into the spacecraft while we are floating. The CDI struts gave us that capability.”
      The Deep Space Optical Communications technology demonstration’s flight laser transceiver is shown at NASA’s Jet Propulsion Laboratory in Southern California in April 2021. The transceiver is mounted on an assembly of struts and actuators — developed by Controlled Dynamics Inc. — that stabilizes the optics from spacecraft vibrations. Several Space Technology Mission Directorate programs supported the vibration isolation technology’s development. NASA/JPL-Caltech Onward Toward Psyche
      The Psyche spacecraft is expected to reach its namesake metal-rich asteroid located between Mars and Jupiter by August 2029. In the meantime, the DSOC project team is celebrating recognition as one of TIME’s Inventions of 2024 and expects the experiment to continue adding to its long list of goals met and exceeded in its first year.
      By Nancy Pekar
      NASA’s Flight Opportunities Program
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Deep Space Optical Communications (DSOC)
      Game Changing Development
      Flight Opportunities
      Share
      Details
      Last Updated Nov 14, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Armstrong Flight Research Center Deep Space Optical Communications (DSOC) Flight Opportunities Program Game Changing Development Program Jet Propulsion Laboratory Psyche Mission Small Business Innovation Research / Small Business Space Communications & Navigation Program Technology Technology Demonstration Missions Program View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar NASA is participating in a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires.  
      The rugged and often remote locations where wildland fires burn mean cell phone service is often limited, making communication between firefighters and command posts difficult.  
      The flight testing of the Strategic Tactical Radio and Tactical Overwatch (STRATO) technology brought together experts from NASA’s Ames Research Center in California’s Silicon Valley, the U.S. Forest Service, high-altitude balloon company Aerostar, and Motorola to provide cell service from above. The effort was funded by the NASA Science Mission Directorate’s Earth Science Division Airborne Science Program and the agency’s Space Technology Mission Directorate Flight Opportunities program.  
      “This project leverages NASA expertise to address real problems,” said Don Sullivan, principal investigator for STRATO at NASA Ames. “We do a lot of experimental, forward-thinking work, but this is something that is operational and can make an immediate impact.” 
      Flying High Above Wildland Fires 
      Soaring above Earth at altitudes of 50,000 feet or more, Aerostar’s Thunderhead high-altitude balloon systems can stay in operation for several months and can be directed to “station keep,” staying within a radius of few miles. Because wildland fires often burn in remote, rugged areas, firefighting takes place in areas where cell service is not ideal. Providing cellular communication from above, from a vehicle that can move as the fire changes, would improve firefighter safety and firefighting efficiency. 
      The STRATO project’s first test flight took place over the West Mountain Complex fires in Idaho in August and demonstrated significant opportunities to support future firefighting efforts. The balloon was fitted with a cellular LTE transmitter and visual and infrared cameras. To transmit between the balloon’s cell equipment and the wildland fire incident command post, the team used a SpaceX Starlink internet satellite device and Silvus broadband wireless system. 
      When tested, the onboard instruments provided cell coverage for a 20-mile radius. By placing the transmitter on a gimbal, that cell service coverage could be adjusted as ground crews moved through the region. 
      The onboard cameras gave fire managers and firefighters on the ground a bird’s-eye view of the fires as they spread and moved, opening the door to increased situational awareness and advanced tracking of firefighting crews. On the ground, teams use an app called Tactical Awareness Kit (TAK) to identify the locations of crew and equipment. Connecting the STRATO equipment to TAK provides real-time location information that can help crews pinpoint how the fire moves and where to direct resources while staying in constant communication. 
      Soaring Into the Future 
      The next steps for the STRATO team are to use the August flight test results to prepare for future fire seasons. The team plans to optimize balloon locations as a constellation to maximize coverage and anticipate airflow changes in the stratosphere where the balloons fly. By placing balloons in strategic locations along the airflow path, they can act as replacements to one another as they are carried by airflow streams. The team may also adapt the scientific equipment aboard the balloons to support other wildland fire initiatives at NASA. 
      As the team prepares for further testing next year, the goal is to keep firefighters informed and in constant communication with each other and their command posts to improve the safety and efficiency of fighting wildland fires. 
      “Firefighters work incredibly hard saving lives and property over long days of work,” said Sullivan. “I feel honored to be able to do what we can to make their jobs safer and better.” 
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Ames Research Center Airborne Science Earth Science Division Flight Opportunities Program Explore More
      5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
      Article 17 mins ago 3 min read Entrevista con Instructor de OCEANOS Samuel Suleiman
      Article 1 day ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barberena-Arias
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Improving Firefighter Safety with STRATO
      Airborne Science at Ames
      Space Technology Mission Directorate
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Energy Program Manager for Facility Projects Wayne Thalasinos, left, stands with NASA Stennis Sustainability Team Lead Alvin Askew at the U.S. Department of Energy in Washington, D.C., on Oct. 30. The previous day, the Department of Energy announced NASA Stennis will receive a $1.95 million grant for an energy conservation project at the south Mississippi center. The Stennis Sustainability Team consists of NASA personnel and contract support. NASA members include Askew, Missy Ferguson and Teenia Perry. Contract members include Jordan McQueen (Synergy-Achieving Consolidated Operations and Maintenance); Michelle Bain (SACOM); Matt Medick (SACOM); Thomas Mitchell (SACOM); Lincoln Gros (SACOM), and Erik Tucker (Leidos). NASA Stennis NASA’s Stennis Space Center has been awarded a highly competitive U.S. Department of Energy grant to transform its main administration building into a facility that produces as much renewable energy as it uses.
      Following an Oct. 29 announcement, NASA Stennis, located near Bay St. Louis, Mississippi, will receive $1.95 million through the Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Program. The grant will fund installation of a four-acre solar panel array onsite that can generate up to 1 megawatt of electricity.
      “This is a flagship project for our NASA center,” said NASA Stennis Director John Bailey. “It will provide renewable energy to help reduce our carbon footprint, contributing to NASA’s agencywide goal of zero greenhouse gas emissions by 2030.”
      The AFFECT Program awards grants to help the federal government achieve its goal of net-zero greenhouse gas emissions by all federal buildings by 2045. More than $1 billion in funding proposals was requested by federal agencies for the second, and final, phase of the initiative. A total of $149.87 million subsequently was awarded for 67 energy conservation and clean energy projects at federal facilities across 28 U.S. states and territories and in six international locations. NASA Stennis is the only agency in Mississippi to receive funding.  
      The site’s solar panel array will build on an $1.65 million energy conservation project already underway at the south Mississippi site to improve energy efficiency. The solar-generated electricity can be used in a number of ways, from powering facility lighting to running computers. The array also will connect to the electrical grid to allow any excess energy to be utilized elsewhere onsite.
      “This solar panel addition will further enhance our energy efficiency,” said NASA Stennis Sustainability Team Lead Alvin Askew. “By locating the solar photovoltaic array by the Emergency Operations Center, it also has potential future benefits in providing backup power to that facility during outages.”
      The NASA Stennis proposal was one of several submitted by NASA centers for agency consideration. Following an agency review process, NASA submitted multiple projects to the Department of Energy for grant consideration.
      “This was a very competitive process, and I am proud of the NASA Stennis Sustainability Team,” NASA Stennis Center Operations Director Michael Tubbs said. “The team’s hard work in recent years and its commitment to continuous improvement in onsite energy conversation laid the groundwork to qualify for this grant. Mr. Askew, in particular, continues to be a leader in creative thinking, helping us meet agency sustainability goals.”
      The NASA Stennis administration building was constructed in 2008 as a Leadership in Energy and Environmental Design-certified, all-electric facility and currently has net-zero emissions.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 1 day ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 1 day ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 1 day ago Share
      Details
      Last Updated Nov 14, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Keep Exploring Discover More Topics From NASA Stennis
      Multi-User Test Complex
      Propulsion Test Engineering
      NASA Stennis Front Door
      NASA Stennis Media Resources
      View the full article
  • Check out these Videos

×
×
  • Create New...