Jump to content

Michael Thorpe Studies Sediment from Source to Sink


Recommended Posts

  • Publishers
Posted

Name: Michael Thorpe

Title: Sedimentary and Planetary Geologist

Organization: Planetary Environments Laboratory, Science Directorate (Code 699)

Michael Thorpe, a man with dark hair, poses with a tube of sediment collected from a nearby body of water. He wears a gray sweatshirt underneath dark green waders, or waterproof overalls, and kneels next to a brown lake with clumpy dirt banks in the foreground and background. Two more scientists in waders stand next to a small, flat white boat. The sky is bright blue and mostly covered with puffy clouds.
Sedimentary and planetary geologist Dr. Michael Thorpe studies sediments’ journey from mountains to downstream lakes, both on Earth and on Mars.
Photo Courtesy of Iceland Space Agency / Daniel Leeb

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As a sedimentary and planetary geologist, my research focuses on how sediments are transformed from the mountains to the lakes downstream, which is a process called source to sink. I study this phenomenon around the globe on Earth and then compare the results to those from similar sites on Mars.

Why did you become a geologist?

I grew up on the Hudson River Valley and loved to be outdoors. I knew that I wanted to pursue a career that kept me outdoors hiking, looking at nature and the environment. My sister, my hiking companion, always told me that rocks have a story to tell, which inspired me.

What is your educational background?

I have a bachelor’s degree in geology from Towson University, and both a master’s and a doctorate in geosciences from Stony Brook University. I then did a NASA post-doctoral fellowship at NASA’s Johnson Space Center in Houston. I was also later contracted at Johnson as a Mars Sample Return scientist.

Why did you come to Goddard?

Goddard was a dream job for me because I have always admired the group of scientists here, and I really wanted to work with the team in the planetary environments laboratory. Over the years, I closely followed their work, and it is exciting to be in a role to start contributing. I came to Goddard in July 2022 and tried to hit the ground running.

Dr. Michael Thorpe laughs and adjusts his coat collar as he stands in ankle-deep water. He wears a gold stocking cap and navy blue winter coat underneath dark green waders, or waterproof overalls. He stands in front of a blue pontoon boat covered with straps, loops, and equipment. Dark brown, rocky mountains are visible in the background and the sky is a heavy, cloudy gray.
Dr. Michael Thorpe, a sedimentary and planetary geologist at Goddard, travels around the world on field campaigns to collect sediment samples. “I hope to keep exploring places around the globe because each field site adds a new piece to the puzzle,” he said. “However, every place I go, the puzzle ends up getting more complex and it motivates me to develop more questions for the next adventure.”
Photo Courtesy of Iceland Space Agency / Daniel Leeb

Tell us about your field campaigns.

I target terrains on Earth that may have been similar to ancient environments on the surface of Mars. To add some complexity to the system, I explore environments around the globe to better understand the impact climate has on the weathering of rocks. This work has implications for planetary exploration but also helps in understanding the long-term carbon cycle on Earth and its role in climate change.

In the field, I scoop up sediments, rocks, and water samples all the way from the source terrains in the mountains to depositional sites downstream. I then bring them back to our labs here at Goddard to study their geochemistry and minerology, but also ship samples off to my amazing collaborators for additional analysis in their labs around the world.

I have been super lucky early in my career be a part of five field campaigns to Iceland and then one to Hawaii, Idaho, and most recently Lazarote, Spain.

I hope to keep exploring places around the globe because each field site adds a new piece to the puzzle. However, every place I go, the puzzle ends up getting more complex and it motivates me to develop more questions for the next adventure.

What preparations do you take to conduct remote field work?

I’ll use Iceland as example for this one. For this work, we commonly are trekking to remote locations. In order to get there, we took modified trucks which were able to go through water, ice, and snow and even climb some pretty steep terrains. Theses trucks are cool because the driver can inflate and deflate the very large tires in real-time.

In the field, we wear our warm gear including down jackets but also sometimes waders to keep us dry while surveying a river. One of my favorite pieces of clothing in the field is a buff, which sits around our necks but we can also pull it up over our faces to shield us from the elements, which can include 70-plus mph winds at times.

Some recent and exciting preparation we have for the field is bringing an inflatable boat, basically a floating pontoon, to sample lake sediment. We take the pontoon over the water and then drill for sediment samples off the platform.

How important is a good team during remote field work?

Establishing a good team is the foundation for successful field work.

As a team leader, it is important to recognize the strengths as well as the limitations of all personnel, including myself. I am aware of my specialties and the areas where each teammate may thrive. When you put the right person in the right position, it makes the team excel. This fosters mutual respect and builds a support system. We understand we need to get the job done and how important each role is for the entire team.

I tend go out in fairly large groups, sometimes as many as 25 people. We all respect the science and each other. Everyone brings a different piece to the team. When we are sampling, everyone has a mission and a role, sometimes creating sub-teams to a sample different area or components of the study site.

Dr. Michael Thorpe turns to look over his shoulder as he stands in water against a cloudy gray-blue sky. He wears a dark green stocking cap and a dark green quilted jacket underneath dark green waders, or waterproof overalls. His right hand rests on the side of a small boat with backpacks sitting on its top. A rocky brown coastline extends into the image behind him, and the clouds hang low over a dark blue horizon far off in the distance.
Dr. Michael Thorpe, a sedimentary and planetary geologist at Goddard, is regularly taken to harsh environments in his study of sediments around the globe.
Photo Courtesy of Iceland Space Agency / Daniel Leeb

What is the most important advice your mentor Amy McAdam told you?

Amy is the geochemist who leads our lab. Amy’s most important advice for me has been “go for it.” I say that jokingly, but it truly is incredibly helpful as a scientist to have someone backing you like that. She puts me in a position to succeed and always gives me the thumbs up to follow my scientific curiosity. Amy leads by example, both in the lab and field, I am grateful for all her support and look forward to working with her for many years.

As a mentor yourself, what is the one thing you tell your students?

Stay curious and do what you love. That’s the motto I have been following in my career, passed down from an amazing lineage of mentors, and I encourage all my mentees to do the same. It’s important for my students to follow their passions as well as to come up with new ideas. At the end of the day, it is remarkable to see a student develop their own research avenue. I hope to continue paying it forward and I look forward to mentoring the next generation of scientists for years to come.

What do you do for fun?

I love to watch and play all sports. Additionally, hiking brings me to my happy place. Hitting the trails with friends or my pup is icing on the cake. Speaking of cake, I also thoroughly enjoy cooking. Cooking relaxes me, it brings the family together, and it’s also something my wife and I love to do together. One of our favorite traditions is pizza Fridays, where we make some homemade pies and everyone is welcome. As for toppings, my favorite might be fried eggplant or spicy Italian sausage.

If you were to have a dinner party, who would you invite, living or dead, in addition to your family?

Easy! I’ve actually thought about this a ton. I would of course first invite my favorite athletes: Michael Jordan, Kobe Bryant, Derek Jeter, and Emmitt Smith. These guys were my role models growing up and their work ethic was truly inspiring.

Additionally, I would love to sit down and have a pizza pie with Neil Armstrong and Jack Schmitt. Neil was obviously the first man on the Moon and Jack was the first geologist on the Moon. Hearing some stories from these pioneers would no-doubt be a lifetime highlight.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Motivated. Passionate. Curious. Supportive. Hard-working. Family-man.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The UAVSAR underbelly pod is in clear view as NASA’s Gulfstream-III research aircraft banks away over Edwards AFBNASA On a changing planet, where phenomena like severe hurricanes, landslides, and wildfires are becoming more severe, scientists need data to assess and model disaster impacts and to potentially make predictions about hazards. NASA’s C-20A aircraft is a significant asset that can carry key instruments for understanding the science behind these phenomena. 
      Based at NASA’s Armstrong Flight Research Center in Edwards, California, the C-20A is a military version of the Gulfstream III business jet and operates as an airborne science aircraft for a variety of Earth science research missions.  
      In October, the plane was deployed to fly over areas affected by Hurricane Milton. With winds of up to 120 miles per hour, the hurricane hit the Florida coast as a category 3 storm, and produced lightning, heavy rainfall, and a series of tornadoes. In the aftermath of the storm, the C-20A was outfitted with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument to collect detailed data about the affected flood areas. 
      “Our team focused specifically on inland river flooding near dense populations, collecting data that could help inform disaster response and preparation in the future,” said Starr Ginn, C-20A aircraft project manager. “By all indications, this rapid response to support Hurricane Milton recovery efforts was a successful coordination of efforts by science and aircraft teams.” 
      The Uninhabited Aerial Vehicle Synthetic Aperture Radar, UAVSAR, is prepared for installation onto NASA’s C-20A aircraft.  THE UAVSAR uses a technique called interferometry to detect and measure very subtle deformations in the Earth’s surface, and the pod is specially designed to be interoperable with unmanned aircraft in the future.  It will gather data from Gabon, Africa in September of 2023.NASA/Steve Freeman The UAVSAR was developed by NASA’s Jet Propulsion Laboratory in Southern California, and uses a technique called interferometry to detect subtle changes to Earth’s surface. Interferometry uses the intersection of multiple wavelengths to make precise measurements. This detection system effectively measures the terrain changes or impacts before and after an extreme natural event. 
      When flown onboard an aircraft, radars like the UAVSAR can also provide more detail than satellite radars. “Where satellite instruments might only get a measurement every one to two weeks, the UAVSAR can fill in points between satellite passes to calibrate ground-based instruments,” Ginn said. “It takes data at faster rates and with more precision. We can design overlapping flights in three or more directions to detect more textures and motions on the Earth’s surface. This is a big advantage over the one-dimensional line-of-sight measurement provided by a single flight.” 
      The C-20A team also used the UAVSAR in October to investigate the Portuguese Bend landslide in Rancho Pales Verdes. The Portuguese Bend Landslide began in the mid- to late-Pleistocene period over 11,000 years ago. Though inactive for thousands of years, the landslide was reactivated in 1956 when a road construction project added weight to the top of it. Recently, the landslide has been moving at increasing rates during dry seasons.  
      NASA’s JPL scientists, Xiang Li, Alexander Handwerger, Gilles Peltzer, and Eric Fielding have been researching this landslide progression using satellite-based instruments. “The high-resolution capability of UAVSAR is ideal for landslides since they have relatively small features,” said Ginn. “This helps us understand the different characteristics of the landslide body.”  
      NASA flew an aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) flew above California fires on Sept. 3 and 10, 2020.NASA/JPL-Caltech The C-20A airborne observatory also provided crucial insight for studies of wildfire. The Fire and Smoke Model Evaluation Experiment (FASMEE), a multi-agency experiment led by the U.S. Department of Agriculture’s Forest Service Pacific Northwest Research Station, included flights of the C-20A. This experiment studied fire behavior and smoke. 
      “The airborne perspective allows FASMEE researchers to better understand fire behavior and smoke production,” said Michael Falkowski, program manager for NASA’s Applied Sciences Wildland Fire program. “Hopefully this data will help mitigate fire risk, restore degraded ecosystems, and protect human communities from catastrophic fire.” 
      Airborne data can inform how scientists and experts understand extreme phenomena on the ground. Researchers on the FASMEE experiment will use the data collected from the UAVSAR instrument to map the forest’s composition and moisture to track areas impacted by the fire, and to study how the fire progressed. 
      “We can explore how fire managers can use airborne data to help make decisions about fires,” added Jacquelyn Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley.
      Share
      Details
      Last Updated Dec 04, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center C-20A Earth Science Earth's Atmosphere Jet Propulsion Laboratory Explore More
      4 min read 2024 AGU Fall Meeting Hyperwall Schedule
      NASA Science at AGU Fall Meeting Hyperwall Schedule, December 9-12, 2024 Join NASA in the…
      Article 41 mins ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
      Article 2 days ago 2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists!
      This year, we’re giving thanks to you for Doing NASA Science! You and the millions…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Earth Science
      Climate Change
      NASA is a global leader in studying Earth’s changing climate.
      Jet Propulsion Laboratory
      View the full article
    • By NASA
      4 min read
      NASA’s Swift Studies Gas-Churning Monster Black Holes
      A pair of monster black holes swirl in a cloud of gas in this artist’s concept of AT 2021hdr, a recurring outburst studied by NASA’s Neil Gehrels Swift Observatory and the Zwicky Transient Facility at Palomar Observatory in California. NASA/Aurore Simonnet (Sonoma State University) Scientists using observations from NASA’s Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy.
      “It’s a very weird event, called AT 2021hdr, that keeps recurring every few months,” said Lorena Hernández-García, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, and University of Valparaíso in Chile. “We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.”  
      A paper about AT 2021hdr, led by Hernández-García, was published Nov. 13 in the journal Astronomy and Astrophysics.
      The dual black holes are in the center of a galaxy called 2MASX J21240027+3409114, located 1 billion light-years away in the northern constellation Cygnus. The pair are about 16 billion miles (26 billion kilometers) apart, close enough that light only takes a day to travel between them. Together they contain 40 million times the Sun’s mass.
      Scientists estimate the black holes complete an orbit every 130 days and will collide and merge in approximately 70,000 years.
      AT 2021hdr was first spotted in March 2021 by the Caltech-led ZTF (Zwicky Transient Facility) at the Palomar Observatory in California. It was flagged as a potentially interesting source by ALeRCE (Automatic Learning for the Rapid Classification of Events). This multidisciplinary team combines artificial intelligence tools with human expertise to report events in the night sky to the astronomical community using the mountains of data collected by survey programs like ZTF.
      “Although this flare was originally thought to be a supernova, outbursts in 2022 made us think of other explanations,” said co-author Alejandra Muñoz-Arancibia, an ALeRCE team member and astrophysicist at the Millennium Institute of Astrophysics and the Center for Mathematical Modeling at the University of Chile. “Each subsequent event has helped us refine our model of what’s going on in the system.”
      Since the first flare, ZTF has detected outbursts from AT 2021hdr every 60 to 90 days.    
      Hernández-García and her team have been observing the source with Swift since November 2022. Swift helped them determine that the binary produces oscillations in ultraviolet and X-ray light on the same time scales as ZTF sees them in the visible range.
      The researchers conducted a Goldilocks-type elimination of different models to explain what they saw in the data.
      Initially, they thought the signal could be the byproduct of normal activity in the galactic center. Then they considered whether a tidal disruption event — the destruction of a star that wandered too close to one of the black holes — could be the cause.
      Finally, they settled on another possibility, the tidal disruption of a gas cloud, one that was bigger than the binary itself. When the cloud encountered the black holes, gravity ripped it apart, forming filaments around the pair, and friction started to heat it. The gas got particularly dense and hot close to the black holes. As the binary orbits, the complex interplay of forces ejects some of the gas from the system on each rotation. These interactions produce the fluctuating light Swift and ZTF observe.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch as a gas cloud encounters two supermassive black holes in this simulation. The complex interplay of gravitational and frictional forces causes the cloud to condense and heat. Some of the gas is ejected from the system with each orbit of the black holes. F. Goicovic et al. 2016 Hernández-García and her team plan to continue observations of AT 2021hdr to better understand the system and improve their models. They’re also interested in studying its home galaxy, which is currently merging with another one nearby — an event first reported in their paper.
      “As Swift approaches its 20th anniversary, it’s incredible to see all the new science it’s still helping the community accomplish,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s still so much it has left to teach us about our ever-changing cosmos.”
      NASA’s missions are part of a growing, worldwide network watching for changes in the sky to solve mysteries of how the universe works.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images and videos.

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 13, 2024 Editor Jeanette Kazmierczak Related Terms
      Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Neil Gehrels Swift Observatory Science & Research Supermassive Black Holes The Universe View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Electra. The team’s project focuses on electric propulsion, integrated aircraft technologies, and vehicle design.Electra Picture yourself at an airport a few decades from now. What does your airliner look like? It’s more efficient, with lower emissions than today’s aircraft – what kinds of designs or technology make that possible? NASA is working to answer those questions by commissioning five new design studies looking to push the boundaries of possibility for sustainable aircraft. 
      Through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative, the agency asked industry and academia to come up with studies looking at aircraft concepts, key technologies, and designs that could offer the transformative solutions needed to secure commercial aviation’s sustainable future by 2050. NASA issued five awards, worth a total of $11.5 million, to four companies and one university. These new NASA-funded studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. 
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Georgia Institute of Technology. The team’s project focuses on exploring scenarios and technologies based on an aircraft concept the institute has developed, known as ATH2ENA.Georgia Institute of Technology “Through initiatives like AACES, NASA is positioned to harness a broad set of perspectives about how to further increase aircraft efficiency, reduce aviation’s environmental impact and enhance U.S. technological competitiveness in the 2040s, 2050s, and beyond,” said Bob Pearce, NASA associate administrator for the Aeronautics Research Mission Directorate. “As a leader in U.S. sustainable aviation research and development, these awards are one example of how we bring together the best ideas and most innovative concepts from the private sector, academia, research agencies, and other stakeholders to pioneer the future of aviation.” 
      For decades, NASA has connected government agencies, industry, and academia to develop sustainable aviation technologies. In 2021, NASA launched its Sustainable Flight National Partnership, focused on technologies that could be incorporated into aircraft by the 2030s. The partnership’s research and development led to current NASA work including the experimental X-66 Sustainable Flight Demonstrator aircraft, its Electrified Powertrain Flight Demonstration project, and the development of more efficient engine cores and processes for the rapid manufacturing of lightweight composite materials. 
      Artist’s concept of a Pratt & Whitney advanced propulsion concept for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. The Pratt & Whitney project focuses on commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions.Pratt & Whitney The new AACES awards are initiating a similar process, but on a longer timeline, focusing on technologies to help transform aviation beyond SFNP with aircraft that could enter service by 2050. The kinds of partnerships NASA develops through SFNP and AACES are critical for the agency to support the U.S. goal of net-zero aviation emissions by 2050 and to help put aviation on a path toward energy-resilience. 
      “The AACES 2050 solicitation drew significant interest from the aviation community and as a result the award process was highly competitive,” said Nateri Madavan, director for NASA’s Advanced Air Vehicles Program. “The proposals selected come from a diverse set of organizations that will provide exciting and wide-ranging explorations of the scenarios, technologies, and aircraft concepts that will advance aviation towards its transformative sustainability goals.” 
      An artist’s concept of JetZero’s blended wing body, which the company’s team will use to evaluate technologies for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. JetZero’s project will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions.JetZero The AACES 2050 awards went to organizations that will form networks of university and corporate partners to advance their studies. NASA expects the awardees to complete their studies by mid-2026. The new awardee institutions are: 
      Aurora Flight Sciences, a Boeing Company, whose team will perform a comprehensive, “open-aperture” exploration of technologies and aircraft concepts for the 2050 timeframe. This will include examining new alternative aviation fuels, propulsion systems, aerodynamic technologies, and aircraft configurations along with other technology areas that arise throughout the study.  The Electra-led team will explore extending Electra’s novel distributed electric propulsion and its unique aerodynamic design capabilities to develop innovative wing and fuselage integrations that deliver sustainable aviation focused on enabling community-friendly emission reduction, noise reduction, and improved air travel access. The company’s existing small aircraft prototype has been flying for over a year, demonstrating Electra’s technology that aims to transform air travel with reduced environmental impact and improved operational efficiency.  Georgia Institute of Technology will perform a comprehensive exploration of sustainability technologies, including alternative fuels, propulsion systems, and aircraft configurations. The institute’s team will then explore new aircraft concepts incorporating the selected technologies with their Advanced Technology Hydrogen Electric Novel Aircraft (ATH2ENA) as a starting point.   JetZero will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions. These technologies will be evaluated on both tube-and wing and JetZero’s blended wing body – an airplane shape that provides more options for larger hydrogen fuel tanks within the aircraft.  Pratt and Whitney a division of RTX Corporation, will explore a broad suite of commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions. The Pratt & Whitney team will then down-select high-priority and alternative propulsion concepts for potential integration studies with various airframe concepts for aircraft in 2050 and beyond.  Artist’s concept of a 50-60 passenger hydrogen fuel cell electric plane created by Boeing through its future flight concept efforts. Aurora Flight Sciences, a Boeing Company, received an award through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative to examine new alternative aviation fuels propulsion systems, aerodynamic technologies, and aircraft configurations, along with other technology areas.Boeing AACES 2050 is part of NASA’s Advanced Air Transport Technology project, which explores and develops technology to further NASA’s vision for the future development of fixed-wing transport aircraft with revolutionary energy efficiency. The project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. 
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
      Article 4 days ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
      Article 6 days ago 5 min read October Transformer of the Month: Nipa Phojanamongkolkij
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 12, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Advanced Air Transport Technology Advanced Air Vehicles Program Sustainable Flight Demonstrator Sustainable Flight National Partnership View the full article
    • By NASA
      NASA logo NASA has awarded $15.6 million in grant funding to 15 projects supporting the maintenance of open-source tools, frameworks, and libraries used by the NASA science community, for the benefit of all.
      The agency’s Open-Source Tools, Frameworks, and Libraries awards provide support for the sustainable development of tools freely available to everyone and critical for the goals of the agency’s Science Mission Directorate.
      “We received almost twice the number of proposals this year than we had in the previous call,” said Steve Crawford, program executive, Open Science implementation, Office of the Chief Science Data Officer, NASA Headquarters in Washington. “The NASA science community’s excitement for this program demonstrates the need for sustained support and maintenance of open-source software. These projects are integral to our missions, critical to our data infrastructure, underpin machine learning and data science tools, and are used by our researchers, every day, to advance science that protects our planet and broadens our understanding of the universe.”
      This award program is one of several cross-divisional opportunities at NASA focused on advancing open science practices. The grants are funded by NASA’s Office of the Chief Science Data Officer through the agency’s Research Opportunities for Space and Earth Science. The solicitation sought proposals through two types of awards:
      Foundational awards: cooperative agreements for up to five years for open-source tools, frameworks, and libraries that have a significant impact on two or more divisions of the Science Mission Directorate. Sustainment awards: grants or cooperative agreements of up to three years for open-source tools, frameworks, and libraries that have significant impact in one or more divisions of the Science Mission Directorate. 2024 awardees are:
      Foundation awards:
      NASA’s Ames Research Center, Silicon Valley, CaliforniaPrincipal investigator: Ross Beyer “Expanding and Maintaining the Ames Stereo Pipeline” Caltech, Pasadena, CaliforniaPrincipal investigator: Brigitta Sipocz “Enhancement of Infrastructure and Sustained Maintenance of Astroquery” Cornell University, Scarsdale, New YorkPrincipal investigator: Ramin Zabih “Modernize and Expand arXiv’s Essential Infrastructure” NASA’s Goddard Space Flight Center, Greenbelt, MarylandPrincipal investigator: D. Cooley “Enabling SMD Science Using the General Mission Analysis Tool” NumFOCUS, Austin, TexasPrincipal investigator: Thomas Caswell “Sustainment of Matplotlib and Cartopy” NumFOCUSPrincipal investigator: Erik Tollerud “Investing in the Astropy Project to Enable Research and Education in Astronomy” Sustainment awards:
      NASA’s Jet Propulsion Laboratory, Southern CaliforniaPrincipal investigator: Cedric David “Sustain NASA’s River Software for the Satellite Data Deluge,” three-year award Pennsylvania State University, University ParkPrincipal investigator: David Radice “AthenaK: A Performance Portable Simulation Infrastructure for Computational Astrophysics,” three-year award United States Geological Survey, Reston, VirginiaPrincipal investigator: Trent Hare “Planetary Updates for QGIS,” one-year award NASA JPLPrincipal investigator: Michael Starch “How To F Prime: Empowering Science Missions Through Documentation and Examples,” three-year award NASA GoddardPrincipal investigator: Albert Shih “Enhancing Consistency and Discoverability Across the SunPy Ecosystem,” three-year award Triad National Security, LLC, Los Alamos, New MexicoPrincipal investigator: Julia Kelliher “Enhancing Analysis Capabilities of Biological Data With the NASA EDGE Bioinformatics Platform,” four-year award iSciences LLC, Burlington, VermontPrincipal investigator: Daniel Baston “Sustaining the Geospatial Data Abstraction Library,” three-year award University of Maryland, College Park,Principal investigator: C Max Stevens “Sustaining the Community Firn Model,” three-year award Quansight, LLC, Austin, TexasPrincipal investigator: Dharhas Pothina “Ensuring a Fast and Secure Core for Scientific Python – Security, Accessibility and Performance of NumPy, SciPy and scikit-learn; Going Beyond NumPy With Accelerator Support,” three-year award For information about open science at NASA, visit:
      https://science.nasa.gov/open-science
      -end-
      Alise Fisher
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      View the full article
    • By NASA
      Credit: NASA Two proposals for missions to observe X-ray and far-infrared wavelengths of light from space were selected by NASA for additional review, the agency announced Thursday. Each proposal team will receive $5 million to conduct a 12-month mission concept study. After detailed evaluation of those studies, NASA expects to select one concept in 2026 to proceed with construction, for a launch in 2032.
      The resulting mission will become the first in a new class of NASA astrophysics missions within the agency’s longstanding Explorers Program. The new mission class, Probe Explorers, will fill a gap between flagship and smaller-scale missions in NASA’s exploration of the secrets of the universe.
      “NASA’s Explorers Program brings out some of the most creative ideas for missions that help us reveal the unknown about our universe. Establishing this new line of missions – the largest our Astrophysics program has ever competed – has taken that creativity to new heights,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Both of the selected concepts could enable ground-breaking science responsive to the top astrophysics priorities of the decade, develop key technologies for future flagship missions, and offer opportunities for the entire community to use the new observatory, for the benefit of all.”
      The National Academies of Sciences, Engineering, and Medicine’s 2020 Decadal Survey, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, recommended NASA establish this new mission class, with the first mission observing either X-ray or far-infrared wavelengths of light. Mission costs for the new Probe Explorers are capped at $1 billion each, not including the cost of the rocket, launch services, or any contributions.
      NASA evaluated Probe Explorers proposals based on their scientific merit in alignment with the Decadal Survey’s recommendations, feasibility of development plans, and use of technologies that could support the development of future large missions.
      The selected proposals are:
      Advanced X-ray Imaging Satellite
      This mission would be an X-ray imaging observatory with a large, flat field-of-view and high spatial resolution. It would study the seeds of supermassive black holes; investigate the process of stellar feedback, which influences how galaxies evolve; and help determine the power sources of a variety of explosive phenomena in the cosmos. The observatory would build on the successes of previous X-ray observatories, capturing new capabilities for X-ray imaging and imaging spectroscopy. Principal investigator: Christopher Reynolds, University of Maryland, College Park Project management: NASA’s Goddard Space Flight Center in Greenbelt, Maryland Probe far-Infrared Mission for Astrophysics
      This observatory would be a 5.9-foot (1.8-meter) telescope studying far-infrared wavelengths, helping bridge the gap between existing infrared observatories, such as NASA’s James Webb Space Telescope, and radio telescopes. By studying radiant energy that only emerges in the far-infrared, the mission would address questions about the origins and growth of planets, supermassive black holes, stars, and cosmic dust. Principal investigator: Jason Glenn, NASA Goddard Project management: NASA’s Jet Propulsion Laboratory in Southern California The Explorers Program is the oldest continuous NASA program designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs. Since the Explorer 1 launch in 1958, which discovered Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators.
      The Explorers Program is managed by NASA Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe.
      For more information about the Explorers Program, visit:
      https://explorers.gsfc.nasa.gov
      -end-
      Alise Fisher
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Oct 03, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Astrophysics Division Astrophysics Explorers Program View the full article
  • Check out these Videos

×
×
  • Create New...