Jump to content

Webb Shows Many Early Galaxies Looked Like Pool Noodles, Surfboards


Recommended Posts

  • Publishers
Posted
5 Min Read

Webb Shows Many Early Galaxies Looked Like Pool Noodles, Surfboards

In the far-left column are two galaxies that have been magnified. The top left galaxy appears circular and light pink with a slightly whiter central region, taking up less than one-sixth of the box. The bottom galaxy is elongated, stretching almost from top left to bottom right. It has a white line at the center that has a pink outline that transitions into and bluish edges at far left and right. Thin lines from each magnified galaxy point their appearances in the broader field. The top galaxy appears as a tiny dot at the upper center, and the bottom galaxy toward the left. Thousands of galaxies appear across most of this view, which is set against the black background of space. There are many overlapping objects at various distances. They include large, blue foreground stars, with Webb’s signature eight-pointed diffraction spikes, and white and pink spiral and elliptical galaxies. Numerous tiny red dots appear throughout the scene. This is a portion of a vast survey known in shorthand as CEERS.
Researchers are analyzing distant galaxies when the universe was only 600 million to 6 billion years old.
Credits: NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin)

Researchers analyzing images from NASA’s James Webb Space Telescope have found that galaxies in the early universe are often flat and elongated, like surfboards and pool noodles – and are rarely round, like volleyballs or frisbees. “Roughly 50 to 80% of the galaxies we studied appear to be flattened in two dimensions,” explained lead author Viraj Pandya, a NASA Hubble Fellow at Columbia University in New York. “Galaxies that look like pool noodles or surfboards seem to be very common in the early universe, which is surprising, since they are uncommon nearby.”

The team focused on a vast field of near-infrared images delivered by Webb, known as the Cosmic Evolution Early Release Science (CEERS) Survey, plucking out galaxies that are estimated to exist when the universe was 600 million to 6 billion years old.

Image: Sample Shapes of Distant Galaxies

In the far-left column are two galaxies that have been magnified. The top left galaxy appears circular and light pink with a slightly whiter central region, taking up less than one-sixth of the box. The bottom galaxy is elongated, stretching almost from top left to bottom right. It has a white line at the center that has a pink outline that transitions into and bluish edges at far left and right. Thin lines from each magnified galaxy point their appearances in the broader field. The top galaxy appears as a tiny dot at the upper center, and the bottom galaxy toward the left. Thousands of galaxies appear across most of this view, which is set against the black background of space. There are many overlapping objects at various distances. They include large, blue foreground stars, with Webb’s signature eight-pointed diffraction spikes, and white and pink spiral and elliptical galaxies. Numerous tiny red dots appear throughout the scene. This is a portion of a vast survey known in shorthand as CEERS.
Researchers analyzing distant galaxies that show up in the Cosmic Evolution Early Release Science (CEERS) Survey from NASA’s James Webb Space Telescope found an array of odd shapes when the universe was only 600 million to 6 billion years old. The inset at the top left shows a galaxy that looks more like a sphere, and is the least common in Webb’s results, along with an example of a galaxy that appears as an edge-on disk but may be better classified as elongated. Elongated shapes are one of the most common identified so far in Webb’s survey.
NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin)

While most distant galaxies look like surfboards and pool noodles, others are shaped like frisbees and volleyballs. The “volleyballs,” or sphere-shaped galaxies, appear the most compact type on the cosmic “ocean” and were also the least frequently identified. The frisbees were found to be as large as the surfboard- and pool noodle-shaped galaxies along the “horizon,” but become more common closer to “shore” in the nearby universe. (Compare them in this illustration.)

Which category would our Milky Way galaxy fall into if we were able to wind the clock back by billions of years? “Our best guess is that it might have appeared more like a surfboard,” said co-author Haowen Zhang, a PhD candidate at the University of Arizona in Tucson. This hypothesis is based partly on new evidence from Webb – theorists have “wound back the clock” to estimate the Milky Way’s mass billions of years ago, which correlates with shape at that time.

Image: 3D Classifications for Distant Galaxies

Six galaxies appear in boxes, three by two. From top left to bottom right: The three galaxies in the top row are labeled, elongated appearance. All three galaxies appear to form thin lines that take up less than a quarter of the frame. The galaxy at top left has a horizontal thin line with two dots beneath it; the center galaxy is a short line from top left to bottom right made up of individual dots, with a haze toward the center-left; the right galaxy is the longest line angles from top left to bottom right, and several dim dots above it. Along the lower row, the galaxies at left and center, labeled disk-like appearances, have hazy spiral shapes, and each take up about half of the frame. The galaxy at lower right, labeled spherical appearance, looks like a bright dot centered in the frame and is far smaller.
These are examples of distant galaxies captured by NASA’s James Webb Space Telescope in its CEERS Survey. Galaxies frequently appear flat and elongated, like pool noodles or surfboards (along the top row). Thin, circular disk-like galaxies, which resemble frisbees, are the next major grouping (shown at lower left and center). Galaxies that are shaped like spheres, or volleyballs, made up the smallest fraction of their detections (shown at lower right). All of these galaxies are estimated to have existed when the universe was only 600 million to 6 billion years old.
NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin)

These distant galaxies are also far less massive than nearby spirals and ellipticals – they are precursors to more massive galaxies like our own. “In the early universe, galaxies had had far less time to grow,” said Kartheik Iyer, a co-author and NASA Hubble Fellow also at Columbia University. “Identifying additional categories for early galaxies is exciting – there’s a lot more to analyze now. We can now study how galaxies’ shapes relate to how they look and better project how they formed in much more detail.”

Webb’s sensitivity, high-resolution images, and specialization in infrared light allowed the team to make quick work of characterizing many CEERS galaxies, and model their 3D geometries. Pandya also says their work wouldn’t be possible without the extensive research astronomers have done using NASA’s Hubble Space Telescope.

For decades, Hubble has wowed us with images of some of the earliest galaxies, beginning with its first “deep field” in 1995 and continuing with a seminal survey known as Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Deep sky surveys like these led to far greater statistics, leading astronomers to create robust 3D models of distant galaxies over all of cosmic time. Today, Webb is helping to enhance these efforts, adding a bounty of distant galaxies beyond Hubble’s reach and revealing the early universe in far greater detail than previously possible.

Webb’s images of the early universe have acted like an ocean swell – delivering new waves of evidence. “Hubble has long showed an excess of elongated galaxies,” explained co-author Marc Huertas-Company, a faculty research scientist at the Institute of Astrophysics on the Canary Islands. But researchers still wondered: Would additional detail show up better with sensitivity to infrared light? “Webb confirmed that Hubble didn’t miss any additional features in the galaxies they both observed. Plus, Webb showed us many more distant galaxies with similar shapes, all in great detail.”

There are still gaps in our knowledge – researchers not only need an even larger sample size from Webb to further refine the properties and precise locations of distant galaxies, they will also need to spend ample time tweaking and updating their models to better reflect the precise geometries of distant galaxies. “These are early results,” said co-author Elizabeth McGrath, an associate professor at Colby College in Waterville, Maine. “We need to delve more deeply into the data to figure out what’s going on, but we’re very excited about these early trends.”

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Right click the images in this article to open a larger version in a new tab/window.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Galaxy Types

Galaxy Evolution

How Can Webb Study the Early Universe?

Infrared Astronomy

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What is a galaxy?

Types of galaxies

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      On January 25, 2025, an Oklahoma City man recorded a baffling UFO that he described as a "plasma-filled jellybean." A concerned neighbor also spotted something unusual in the sky and soon, the entire neighborhood gathered outside, to witness the anomaly. 

      The mysterious object emitted a glow and moved erratically, mesmerizing onlookers. In his recorded footage, Frederick can be heard narrating the event. "I don’t hear anything, and it's moving unpredictably," he noted. "It looks like a jellybean, but the interior appears to be plasma." 
      Frederick decided to launch his drone for a closer look, but upon attempting to deploy his drone, he encountered unexplained technical failures. "My controller provides voice notifications," he explained. "It repeatedly announced, ‘unable to take off, electromagnetic interference." 
      After multiple attempts, he finally got the drone airborne, reaching approximately 1,000 feet beneath the UFO. However, just after capturing three images, the drone’s video function failed, and its battery, despite being fully charged, suddenly drained. "It had a 35-minute flight time," Frederick stated. "But right after taking those three pictures, the controller alerted me: ‘low battery, return to home." 
      Seeking expert insight, Frederick shared his footage and images with University of Oklahoma physics professor Mukremin Kilic. When asked about the sighting, Kilic remarked, "I don’t know what it is" and suggested the object was likely a drone. However, this theory does not explain why Frederick’s own drone experienced interference, raising further questions about the true nature of the UFO.
        View the full article
    • By NASA
      5 Min Read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
      Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Credits:
      NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) Discovery proves decades-old theory of galaxy feeding cycle.
      Researchers using NASA’s James Webb Space Telescope have finally solved the mystery of how a massive galaxy cluster is forming stars at such a high rate. The confirmation from Webb builds on more than a decade of studies using NASA’s Chandra X-ray Observatory and Hubble Space Telescope, as well as several ground-based observatories.
      The Phoenix cluster, a grouping of galaxies bound together by gravity 5.8 billion light-years from Earth, has been a target of interest for astronomers due to a few unique properties. In particular, ones that are surprising: a suspected extreme cooling of gas and a furious star formation rate despite a roughly 10 billion solar mass supermassive black hole at its core. In other observed galaxy clusters, the central supermassive black hole powers energetic particles and radiation that prevents gas from cooling enough to form stars. Researchers have been studying gas flows within this cluster to try to understand how it is driving such extreme star formation.
      Image A: Phoenix Cluster (Hubble, Chandra, VLA Annotated)
      Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Webb’s powerful sensitivity in the mid-infrared detected the cooling gas that leads to a furious rate of star formation in this massive galaxy cluster. Credit: NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) “We can compare our previous studies of the Phoenix cluster, which found differing cooling rates at different temperatures, to a ski slope,” said Michael McDonald of the Massachusetts Institute of Technology in Cambridge, principal investigator of the program. “The Phoenix cluster has the largest reservoir of hot, cooling gas of any galaxy cluster — analogous to having the busiest chair lift, bringing the most skiers to the top of the mountain. However, not all of those skiers were making it down the mountain, meaning not all the gas was cooling to low temperatures. If you had a ski slope where there were significantly more people getting off the ski lift at the top than were arriving at the bottom, that would be a problem!”
      To date, in the Phoenix cluster, the numbers weren’t adding up, and researchers were missing a piece of the process. Webb has now found those proverbial skiers at the middle of the mountain, in that it has tracked and mapped the missing cooling gas that will ultimately feed star formation. Most importantly, this intermediary warm gas was found within cavities tracing the very hot gas, a searing 18 million degrees Fahrenheit, and the already cooled gas around 18,000 degrees Fahrenheit.
      The team studied the cluster’s core in more detail than ever before with the Medium-Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This tool allows researchers to take two-dimenstional spectroscopic data from a region of the sky, during one set of observations.
      “Previous studies only measured gas at the extreme cold and hot ends of the temperature distribution throughout the center of the cluster,” added McDonald. “We were limited — it was not possible to detect the ‘warm’ gas that we were looking for. With Webb, we could do this for the first time.”
      Image B: Phoenix Cluster (Hubble, Chandra, VLA)
      This image of the Phoenix cluster combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory, and the Very Large Array radio telescope. X-rays from Chandra depict extremely hot gas in purple. Optical light data from Hubble show galaxies in yellow, and filaments of cooler gas where stars are forming in light blue. Outburst generated jets, represented in red, are seen in radio waves by the VLA radio telescope. NASA, CXC, NRAO, ESA, M. McDonald (MIT). A Quirk of Nature
      Webb’s capability to detect this specific temperature of cooling gas, around 540,000 degrees Fahrenheit, is in part due to its instrumental capabilities. However, the researchers are getting a little help from nature, as well.
      This oddity involves two very different ionized atoms, neon and oxygen, created in similar environments. At these temperatures, the emission from oxygen is 100 times brighter but is only visible in ultraviolet. Even though the neon is much fainter, it glows in the infrared, which allowed the researchers to take advantage of Webb’s advanced instruments.
      “In the mid-infrared wavelengths detected by Webb, the neon VI signature was absolutely booming,” explained Michael Reefe, also of the Massachusetts Institute of Technology, lead author on the paper published in Nature. “Even though this emission is usually more difficult to detect, Webb’s sensitivity in the mid-infrared cuts through all of the noise.”
      The team now hopes to employ this technique to study more typical galaxy clusters. While the Phoenix cluster is unique in many ways, this proof of concept is an important step towards learning about how other galaxy clusters form stars.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Read the research paper published in Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Article: Large-scale Structures
      Article: Phoenix Galaxy Cluster’s black hole
      Article: Spectroscopy 101
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

      View the full article
    • By Space Force
      Memorandum on Revocation of Officer Source of Commission Applicant Pool Goals.
      View the full article
    • By European Space Agency
      This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month presents HH 30 in unprecedented detail. This target is an edge-on protoplanetary disc that is surrounded by jets and a disc wind, and is located in the dark cloud LDN 1551 in the Taurus Molecular Cloud. 
      View the full article
    • By NASA
      Perseus Cluster: X-ray: NASA/CXC/SAO/V. Olivares et al.; Optical/IR: DSS; H-alpha: CFHT/SITELLE; Centaurus Cluster: X-ray: NASA/CXC/SAO/V. Olivaresi et al.; Optical/IR: NASA/ESA/STScI; H-alpha: ESO/VLT/MUSE; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have taken a crucial step in showing that the most massive black holes in the universe can create their own meals. Data from NASA’s Chandra X-ray Observatory and the Very Large Telescope (VLT) provide new evidence that outbursts from black holes can help cool down gas to feed themselves.
      This study was based on observations of seven clusters of galaxies. The centers of galaxy clusters contain the universe’s most massive galaxies, which harbor huge black holes with masses ranging from millions to tens of billions of times that of the Sun. Jets from these black holes are driven by the black holes feasting on gas.
      These images show two of the galaxy clusters in the study, the Perseus Cluster and the Centaurus Cluster. Chandra data represented in blue reveals X-rays from filaments of hot gas, and data from the VLT, an optical telescope in Chile, shows cooler filaments in red.
      The results support a model where outbursts from the black holes trigger hot gas to cool and form narrow filaments of warm gas. Turbulence in the gas also plays an important role in this triggering process.
      According to this model, some of the warm gas in these filaments should then flow into the centers of the galaxies to feed the black holes, causing an outburst. The outburst causes more gas to cool and feed the black holes, leading to further outbursts.
      This model predicts there will be a relationship between the brightness of filaments of hot and warm gas in the centers of galaxy clusters. More specifically, in regions where the hot gas is brighter, the warm gas should also be brighter. The team of astronomers has, for the first time, discovered such a relationship, giving critical support for the model.
      This result also provides new understanding of these gas-filled filaments, which are important not just for feeding black holes but also for causing new stars to form. This advance was made possible by an innovative technique that isolates the hot filaments in the Chandra X-ray data from other structures, including large cavities in the hot gas created by the black hole’s jets.
      The newly found relationship for these filaments shows remarkable similarity to the one found in the tails of jellyfish galaxies, which have had gas stripped away from them as they travel through surrounding gas, forming long tails. This similarity reveals an unexpected cosmic connection between the two objects and implies a similar process is occurring in these objects.
      This work was led by Valeria Olivares from the University of Santiago de Chile, and was published Monday in Nature Astronomy. The study brought together international experts in optical and X-ray observations and simulations from the United States, Chile, Australia, Canada, and Italy. The work relied on the capabilities of the MUSE (Multi Unit Spectroscopic Explorer) instrument on the VLT, which generates 3D views of the universe.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features composite images shown side-by-side of two different galaxy clusters, each with a central black hole surrounded by patches and filaments of gas. The galaxy clusters, known as Perseus and Centaurus, are two of seven galaxy clusters observed as part of an international study led by the University of Santiago de Chile.
      In each image, a patch of purple with neon pink veins floats in the blackness of space, surrounded by flecks of light. At the center of each patch is a glowing, bright white dot. The bright white dots are black holes. The purple patches represent hot X-ray gas, and the neon pink veins represent filaments of warm gas. According to the model published in the study, jets from the black holes impact the hot X-ray gas. This gas cools into warm filaments, with some warm gas flowing back into the black hole. The return flow of warm gas causes jets to again cool the hot gas, triggering the cycle once again.
      While the images of the two galaxy clusters are broadly similar, there are significant visual differences. In the image of the Perseus Cluster on the left, the surrounding flecks of light are larger and brighter, making the individual galaxies they represent easier to discern. Here, the purple gas has a blue tint, and the hot pink filaments appear solid, as if rendered with quivering strokes of a paintbrush. In the image of the Centaurus Cluster on the right, the purple gas appears softer, with a more diffuse quality. The filaments are rendered in more detail, with feathery edges, and gradation in color ranging from pale pink to neon red.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...