Members Can Post Anonymously On This Site
STScI Astrophysicist Shares 2006 Gruber Cosmology Prize
-
Similar Topics
-
By European Space Agency
Europe’s space industry gathered at the European Space Agency (ESA) in the Netherlands on 3–4 April to gain insights into the future of space in Europe.
View the full article
-
By NASA
NASA’s SpaceX Crew-11 members stand inside the Space Vehicle Mockup Facility at the agency’s Johnson Space Center in Houston. From left are Mission Specialist Kimiya Yui from JAXA (Japan Aerospace Exploration Agency), Commander NASA astronaut Zena Cardman, Mission Specialist Oleg Platonov of Roscosmos, and Pilot NASA astronaut Mike Fincke.Credit: NASA As part of NASA’s SpaceX Crew-11 mission, four crew members from three space agencies will launch in the coming months to the International Space Station for a long-duration science expedition aboard the orbiting laboratory.
NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Kimiya Yui, and Roscosmos cosmonaut Mission Specialist Oleg Platonov will join crew members aboard the space station no earlier than July 2025.
The flight is the 11th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. The crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions to the Moon, as well as benefit people on Earth.
Cardman previously was assigned to NASA’s SpaceX Crew-9 mission, and Fincke previously was assigned to NASA’s Boeing Starliner-1 mission. NASA decided to reassign the astronauts to Crew-11 in overall support of planned activities aboard the International Space Station. Cardman carries her experience training as a commander on Dragon spacecraft, and Fincke brings long-duration spaceflight experience to this crew complement.
Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she had begun pursuing a doctorate in Geosciences. Cardman’s research in geobiology and geochemical cycling focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon and Boeing Starliner toward operational certification. The Emsworth, Pennsylvania, native is a distinguished graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both Aeronautics and Astronautics, as well as Earth, Atmospheric and Planetary Sciences. He also has a master’s degree in Aeronautics and Astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in more than 30 different aircraft.
With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel.
The Crew-11 mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in Engineering from Krasnodar Air Force Academy in Aircraft Operations and Air Traffic Management. He also earned a bachelor’s degree in State and Municipal Management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Courtney Beasley / Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Mar 27, 2025 LocationNASA Headquarters Related Terms
Commercial Space Commercial Crew Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Low Earth Orbit Economy Space Operations Mission Directorate
View the full article
-
By NASA
The Space Technology Payload Challenge invites individuals, teams, and organizations to submit applications for systems that advance technology to address one or more of NASA’s shortfalls. These shortfalls identify technology areas where further technology development is required to meet future exploration, science, and other mission needs. In addition, technologies to address these select shortfalls are also potentially well suited for a suborbital or hosted orbital flight demonstration to help mature the innovation. The expectation is that the technology will be tested at the end of the challenge aboard a suborbital vehicle, rocket-powered lander, high altitude balloon, aircraft following a reduced gravity profile (i.e., parabolic flight), or orbital vehicle that can host payloads. The shortfalls selected for this challenge are divided into two groups. The first group is derived from the Space Technology Mission Directorate (STMD) civil space shortfall list. The second group is in partnership with NASA’s Biological and Physical Sciences (BPS) Division and is derived from the Commercially Enabled Rapid Space Science Initiative (CERISS) program needs.
Award: $4,500,000 in total prizes
Open Date: December 10, 2024
Close Date: March 4, 2025
For more information, visit: https://www.stpc.nasatechleap.org/
View the full article
-
By NASA
Through the Artemis campaign, NASA will land the next American astronauts and first international astronaut on the South Pole region of the Moon. On Thursday, NASA announced the latest updates to its lunar exploration plans.
Experts discussed results of NASA’s investigation into its Orion spacecraft heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight. For the Artemis II crewed test flight, engineers will continue to prepare Orion with the heat shield already attached to the capsule. The agency also announced it is now targeting April 2026 for Artemis II and mid-2027 for Artemis III. The updated mission timelines also reflect time to address the Orion environmental control and life support systems.
“The Artemis campaign is the most daring, technically challenging, collaborative, international endeavor humanity has ever set out to do,” said NASA Administrator Bill Nelson. “We have made significant progress on the Artemis campaign over the past four years, and I’m proud of the work our teams have done to prepare us for this next step forward in exploration as we look to learn more about Orion’s life support systems to sustain crew operations during Artemis II. We need to get this next test flight right. That’s how the Artemis campaign succeeds.”
The agency’s decision comes after an extensive investigation of an Artemis I heat shield issue showed the Artemis II heat shield can keep the crew safe during the planned mission with changes to Orion’s trajectory as it enters Earth’s atmosphere and slows from nearly 25,000 mph to about 325 mph before its parachutes unfurl for safe splashdown in the Pacific Ocean.
“Throughout our process to investigate the heat shield phenomenon and determine a forward path, we’ve stayed true to NASA’s core values; safety and data-driven analysis remained at the forefront,” said Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The updates to our mission plans are a positive step toward ensuring we can safely accomplish our objectives at the Moon and develop the technologies and capabilities needed for crewed Mars missions.”
NASA will continue stacking its SLS (Space Launch System) rocket elements, which began in November, and prepare it for integration with Orion for Artemis II.
Throughout the fall months, NASA, along with an independent review team, established the technical cause of an issue seen after the uncrewed Artemis I test flight in which charred material on the heat shield wore away differently than expected. Extensive analysis, including from more than 100 tests at unique facilities across the country, determined the heat shield on Artemis I did not allow for enough of the gases generated inside a material called Avcoat to escape, which caused some of the material to crack and break off. Avcoat is designed to wear away as it heats up and is a key material in the thermal protection system that guards Orion and its crew from the nearly 5,000 degrees Fahrenheit of temperatures that are generated when Orion returns from the Moon through Earth’s atmosphere. Although a crew was not inside Orion during Artemis I, data shows the temperature inside Orion remained comfortable and safe had crew been aboard.
Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. The skip entry is needed for return from speeds expected for lunar landing missions.
“Victor, Christina, Jeremy, and I have been following every aspect of this decision and we are thankful for the openness of NASA to weigh all options and make decisions in the best interest of human spaceflight. We are excited to fly Artemis II and continue paving the way for sustained human exploration of the Moon and Mars,” said Reid Wiseman, NASA astronaut and Artemis II commander. “We were at the agency’s Kennedy Space Center in Florida recently and put eyes on our SLS rocket boosters, the core stage, and the Orion spacecraft. It is inspiring to see the scale of this effort, to meet the people working on this machine, and we can’t wait to fly it to the Moon.”
Wiseman, along with NASA astronauts Victor Glover and Christina Koch and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will fly aboard the 10-day Artemis II test flight around the Moon and back. The flight will provide valuable data about Orion systems needed to support crew on their journey to deep space and bring them safely home, including air revitalization in the cabin, manual flying capabilities, and how humans interact with other hardware and software in the spacecraft.
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work farther away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more information about Artemis, visit:
https://www.nasa.gov/artemis
-end-
Meira Bernstein / Rachel Kraft
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov
Share
Details
Last Updated Dec 05, 2024 LocationNASA Headquarters Related Terms
Missions Artemis Artemis 2 Exploration Systems Development Mission Directorate NASA Directorates View the full article
-
By NASA
NASA astronaut Tracy C. Dyson displays from JAXA (Japan Aerospace Exploration Agency) food packets in the International Space Station galley.Credits: NASA NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.
The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.
“The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.
Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.
“By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”
As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.
NASA will continue providing best practices and offer additional opportunities to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.
The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/humans-in-space/commercial-space/
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.