Jump to content

Recommended Posts

Posted
low_STSCI-H-p-0641a-k-1340x520.png

This active region of star formation in the Large Magellanic Cloud (LMC), as photographed by NASA's Hubble Space Telescope, unveils wispy clouds of hydrogen and oxygen that swirl and mix with dust on a canvas of astronomical size. The LMC is a satellite galaxy of the Milky Way.

This particular region within the LMC, referred to as N 180B, contains some of the brightest known star clusters. This image was taken with Hubble's Wide Field Planetary Camera 2 in 1998 using filters that isolate light emitted by hydrogen and oxygen gas.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Martian dust devil can be seen consuming its smaller friend in this short video made of images taken at the rim of Jezero Crater by NASA’s Perseverance Mars rover on Jan. 25, 2025. NASA/JPL-Caltech/SSI The six-wheeled explorer recently captured several Red Planet mini-twisters spinning on the rim of Jezero Crater.
      A Martian dust devil can be seen consuming a smaller one in this short video made of images taken by a navigation camera aboard NASA’s Perseverance Mars rover. These swirling, sometimes towering columns of air and dust are common on Mars. The smaller dust devil’s demise was captured during an imaging experiment conducted by Perseverance’s science team to better understand the forces at play in the Martian atmosphere.
      When the rover snapped these images from about 0.6 miles (1 kilometer) away, the larger dust devil was approximately 210 feet (65 meters) wide, while the smaller, trailing dust devil was roughly 16 feet (5 meters) wide. Two other dust devils can also be seen in the background at left and center. Perseverance recorded the scene Jan. 25 as it explored the western rim of Mars’ Jezero Crater at a location called “Witch Hazel Hill.”
      “Convective vortices — aka dust devils — can be rather fiendish,” said Mark Lemmon, a Perseverance scientist at the Space Science Institute in Boulder, Colorado. “These mini-twisters wander the surface of Mars, picking up dust as they go and lowering the visibility in their immediate area. If two dust devils happen upon each other, they can either obliterate one another or merge, with the stronger one consuming the weaker.”
      While exploring the rim of Jezero Crater on Mars, NASA’s Perseverance rover captured new images of multiple dust devils in January 2025. These captivating phenomena have been documented for decades by the agency’s Red Planet robotic explorers. NASA/JPL-Caltech/LANL/CNES/CNRS/INTA-CSIC/Space Science Institute/ISAE-Supaero/University of Arizona Science of Whirlwinds
      Dust devils are formed by rising and rotating columns of warm air. Air near the planet’s surface becomes heated by contact with the warmer ground and rises through the denser, cooler air above. As other air moves along the surface to take the place of the rising warmer air, it begins to rotate. When the incoming air rises into the column, it picks up speed like a spinning ice skater bringing their arms closer to their body. The air rushing in also picks up dust, and a dust devil is born.
      “Dust devils play a significant role in Martian weather patterns,” said Katie Stack Morgan, project scientist for the Perseverance rover at NASA’s Jet Propulsion Laboratory in Southern California. “Dust devil study is important because these phenomena indicate atmospheric conditions, such as prevailing wind directions and speed, and are responsible for about half the dust in the Martian atmosphere.”
      NASA’s Viking 1 orbiter captured this Martian dust devil casting a shadow on Aug. 1, 1978. During the 15-second interval between the two images, the dust devil moved toward the northeast (toward the upper right) at a rate of about 59 feet (18 meters) per second. NASA/JPL-Caltech/MSSS Since landing in 2021, Perseverance has imaged whirlwinds on many occasions, including one on Sept. 27, 2021, where a swarm of dust devils danced across the floor of Jezero Crater and the rover used its SuperCam microphone to record the first sounds of a Martian dust devil.
      NASA’s Viking orbiters, in the 1970s, were the first spacecraft to photograph Martian dust devils. Two decades later, the agency’s Pathfinder mission was the first to image one from the surface and even detected a dust devil passing over the lander. Twin rovers Spirit and Opportunity managed to capture their fair share of dusty whirlwinds. Curiosity, which is exploring a location called Mount Sharp in Gale Crater on the opposite side of the Red Planet as Perseverance, sees them as well.
      Capturing a dust devil image or video with a spacecraft takes some luck. Scientists can’t predict when they’ll appear, so Perseverance routinely monitors in all directions for them. When scientists see them occur more frequently at a specific time of day or approach from a certain direction, they use that information to focus their monitoring to try to catch additional whirlwinds.
      “If you feel bad for the little devil in our latest video, it may give you some solace to know the larger perpetrator most likely met its own end a few minutes later,” said Lemmon. “Dust devils on Mars only last about 10 minutes.”
      More About Perseverance
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2025-047
      Share
      Details
      Last Updated Apr 03, 2025 Related Terms
      Perseverance (Rover) Curiosity (Rover) Jet Propulsion Laboratory Mars Mars 2020 Mars Exploration Rovers (MER) Mars Pathfinder Viking Explore More
      3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 3 days ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s Electrodynamic Dust Shield (EDS) successfully demonstrated its ability to remove regolith, or lunar dust and dirt, from its various surfaces on the Moon during Firefly Aerospace’s Blue Ghost Mission 1, which concluded on March 16. Lunar dust is extremely abrasive and electrostatic, which means it clings to anything that carries a charge. It can damage everything from spacesuits and hardware to human lungs, making lunar dust one of the most challenging features of living and working on the lunar surface. The EDS technology uses electrodynamic forces to lift and remove the lunar dust from its surfaces. The first image showcases the glass and thermal radiator surfaces, coated in a layer of regolith. As you slide to the left, the photo reveals the results after EDS activation. Dust was removed from both surfaces, proving the technology’s effectiveness in mitigating dust accumulation.
      This milestone marks a significant step toward sustaining long-term lunar and interplanetary operations by reducing dust-related hazards to a variety of surfaces for space applications ranging from thermal radiators, solar panels, and camera lenses to spacesuits, boots, and helmet visors. The EDS technology is paving the way for future dust mitigation solutions, supporting NASA’s Artemis campaign and beyond. NASA’s Electrodynamic Dust Shield was developed at Kennedy Space Center in Florida with funding from NASA’s Game Changing Development Program, managed by the agency’s Space Technology Mission Directorate.
      Image Credit: NASA
      View the full article
    • By NASA
      NASA/Nick Hague NASA astronauts Butch Wilmore, Nick Hague, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov – the members of NASA’s SpaceX Crew-9 mission – smile at the camera in this Feb. 19, 2025, photo. While aboard the International Space Station, Hague, Williams, and Wilmore completed more than 900 hours of research between more than 150 unique scientific experiments and technology demonstrations during their stay aboard the orbiting laboratory.
      Wilmore, Hague, Williams, and Gorbunov are set to return to Earth on Tuesday, March 18, with splashdown set for approximately 5:57 p.m. EDT.
      Watch NASA’s Crew-9 return coverage at 4:45 p.m. EDT Tuesday on NASA+.
      Image credit: NASA/Nick Hague
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Examines Stars Ensconced in a Cocoon of Gas
      NGC 460 is an open cluster of stars within a greater collection of nebulae and star clusters known as the N83-84-85 complex. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)
      Download this image

      An open cluster of stars shines through misty, cocoon-like gas clouds in this Hubble Space Telescope image of NGC 460.
      NGC 460 is located in a region of the Small Magellanic Cloud, a dwarf galaxy that orbits the Milky Way. This particular region contains a number of young star clusters and nebulae of different sizes ― all likely related to each other. The clouds of gas and dust can give rise to stars as portions of them collapse, and radiation and stellar winds from those hot, young bright stars in turn shape and compress the clouds, triggering new waves of star formation. The hydrogen clouds are ionized by the radiation of nearby stars, causing them to glow.
      The NGC 460 star cluster resides in one of the youngest parts of this interconnected complex of stellar clusters and nebulae, which is also home to a number of O-type stars: the brightest, hottest and most massive of the normal, hydrogen-burning stars (called main-sequence stars) like our Sun. O-type stars are rare ― out of more than 4 billion stars in the Milky Way, only about 20,000 are estimated to be O-type stars. The area that holds NGC 460, known as N83, may have been created when two hydrogen clouds in the region collided with one another, creating several O-type stars and nebulae.
      Open clusters like NGC 460 are made of anywhere from a few dozen to a few thousand stars loosely knitted together by gravity. Open clusters generally contain young stars, which may migrate outward into their galaxies as time progresses. NGC 460’s stars may someday disperse into the Small Magellanic Cloud, one of the Milky Way’s closest galactic neighbors at about 200,000 light-years away. Because it is both close and bright, it offers an opportunity to study phenomena that are difficult to examine in more distant galaxies.
      Six overlapping observations from a study of the gas and dust between stars, called the interstellar medium, were combined to create this Hubble image. The study aims to understand how gravitational forces between interacting galaxies can foster bursts of star formation. This highly detailed 65 megapixel mosaic includes both visible and infrared wavelengths. Download the 400 MB file and zoom in to see some of the intricacies captured by Hubble.
      Explore More

      Hubble’s Star Clusters

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 08, 2025 Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Magellanic Clouds Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      2 Min Read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      A sample holder in a vacuum chamber spins during a lunar dust adhesion test at NASA’s Johnson Space Center. Credits: NASA/Josh Litofsky NASA’s Artemis campaign aims to return humans to the Moon, develop a sustainable presence there, and lay the groundwork for the first crewed missions to Mars. As the agency prepares for longer stays on and around the Moon, engineers are working diligently to understand the complex behavior of lunar dust, the sharp, jagged particles that can cling to spacesuits and jam equipment.
      Lunar dust has posed a problem since astronauts first encountered it during the Apollo missions. Ahead of more frequent and intense contact with dust, NASA is developing new strategies to protect equipment as astronauts travel between the Moon and spacecraft like Gateway, humanity’s first lunar space station.
      Josh Litofsky, systems engineer at NASA’s Johnson Space Center, scoops material designed to behave like lunar dust to test how it adheres to Gateway materials. NASA/Bill Stafford Unlike Apollo-era spacecraft that faced lunar dust exposure just once, Gateway will encounter it each time a Human Landing System spacecraft returns to the space station from the lunar South Pole region. Dust could enter Gateway’s environment, risking damage to science instruments, solar arrays, robotic systems, and other important hardware.
      Josh Litofsky is the principal investigator and project manager leading a Gateway lunar dust adhesion testing campaign at NASA’s Johnson Space Center in Houston. His team tracks how the dust interacts with materials used to build Gateway.
      An artist’s rendering of the Gateway lunar space station in polar orbit around the Moon. NASA/Alberto Bertolin “The particles are jagged from millions of years of micrometeoroid impacts, sticky due to chemical and electrical forces, and extremely small,” Litofsky said. “Even small amounts of lunar dust can have a big impact on equipment and systems.”
      Litofksy’s work seeks to validate the Gateway On-orbit Lunar Dust Modeling and Analysis Program (GOLDMAP), developed by Ronald Lee, also of Johnson Space Center. By considering factors such as the design and configuration of the space station, the materials used, and the unique conditions in lunar orbit, GOLDMAP helps predict how dust may move and settle on Gateway’s external surfaces.
      Josh Litofsky, systems engineer at NASA’s Johnson Space Center, places a sample holder inside a vacuum chamber to test how lunar dust sticks to Gateway materials. NASA/Bill StaffordNASA/Bill Stafford Early GOLDMAP simulations have shown that lunar dust can form clouds around Gateway, with larger particles sticking to surfaces.
      The data from these tests and simulations will help NASA safeguard Gateway, to ensure the space station’s longevity during the next era of lunar exploration.
      The lessons learned managing lunar dust and other harsh conditions through Gateway and Artemis will prepare NASA and its international partners for missions deeper into the cosmos
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Jan 22, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Gateway Space Station Artemis Exploration Systems Development Mission Directorate Gateway Program Johnson Space Center Explore More
      4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 10 months ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
      Article 1 month ago 3 min read Measuring Moon Dust to Fight Air Pollution
      Article 4 months ago Keep Exploring Discover More Topics From NASA
      Space Launch System (SLS)
      Orion Spacecraft
      Gateway
      International teams of astronauts will explore the scientific mysteries of deep space with Gateway, humanity’s first space station around the…
      Human Landing System
      View the full article
  • Check out these Videos

×
×
  • Create New...