Members Can Post Anonymously On This Site
NASA’s PACE To Investigate Oceans, Atmospheres in Changing Climate
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGS Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.
We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.
The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.
The NISAR mission will measure the motion of Earth’s surface — data that can be used to monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies Beneath
Targeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.
The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.
“The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.
Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.
“From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”
Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.
Finding Normal
When it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.
The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.
“There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”
More About NISAR
The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.
To learn more about NISAR, visit:
https://nisar.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-155
Share
Details
Last Updated Nov 08, 2024 Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
Article 22 hours ago 3 min read Integrating Relevant Science Investigations into Migrant Children Education
For three weeks in August, over 100 migrant children (ages 3-15) got to engage in…
Article 2 days ago 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
A mentor of research scientist Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” Kacenelenbogen pushes beyond her comfort zone to explore the unknown.
Name: Meloë S. Kacenelenbogen
Formal Job Classification: Research scientist
Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)
Dr. Meloë S. Kacenelenbogen is a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She studies the impact of aerosols on air quality and the Earth’s climate.Photo courtesy of Meloë Kacenelenbogen What do you do and what is most interesting about your role here at Goddard?
I study the impact of aerosols — suspended particles from, for example, wildfire smoke, desert dust, urban pollution, and volcanic eruptions — on air quality and the Earth’s climate. I use space, air, and ground-based observations, as well as models.
Why did you become a scientist? What is your educational background?
I never made a deliberate choice to become a scientist. I started with very little confidence as a child and then built up my confidence by achieving things I thought I could not do. I chose the hardest fields to work on along the way. Science looked hard and so did fluid mechanics, remote sensing, and atmospheric physics. I have failed many times, but I always learn something and move on. I do get scared and maybe even paralyzed for a day or two, but I never let fear or failure immobilize me for long.
I was born in Maryland, but my family moved to France when I was young, so I am fluent in French. I have a bachelor’s and master’s degree in mechanical engineering, and physical methods in remote sensing from the Université Pierre et Marie Curie (Paris VI, Jussieu). In 2008, I got a Ph.D. in atmospheric physics for applying satellite remote sensing to air quality at the Université des Sciences et Technologies de Lille (USTL), France.
What are some of your career highlights?
After my Ph.D., I worked for the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC), on spaceborne and ground-based lidars. In 2009, I got a NASA Post-doctoral Program (NPP) fellowship at the agency’s Ames Research Center in California’s Silicon Valley, where I worked for 13 years on space-based, aircraft-based, and ground-based atmospheric aerosol vertical distribution and aerosol typing.
In 2022, I came to work at the Climate and Radiation Lab at Goddard.
What is most interesting about aerosols?
Aerosols are very topical because they have a huge impact on the air we breathe and our Earth’s climate. The smaller the aerosol, the deeper it can get into our lungs. Among other sources, aerosols can come from cars, factories, or wildfires. We all know that wildfires are becoming bigger and more frequent. They are expected to happen even more frequently in the future due to climate change. Both when I was living in California and here in Maryland, I have experienced first-hand choking from the wildfire smoke. I will always remember how apocalyptic it felt back in the summer of 2020 in California when wildfire smoke was paired with COVID confinement, and the sky turned Mars-like orange.
Please tell us about your involvement with the Atmosphere Observing System (AOS)?
I am incredibly lucky to be able to contribute to the next generation of NASA’s satellites. I am working on AOS, which will observe aerosols, clouds, convention, and precipitation in the Earth’s atmosphere. I am part of the team that is helping design several instruments and algorithms.
My role is to connect this spaceborne observing system to all our other space, ground, and air-based measurements at the time of launch. We are making a mesh of observations to address the science questions, run the algorithms, and validate the spaceborne measurements. I am constantly pushed to expand my horizon and my own knowledge.
Why do you enjoy always challenging yourself intellectually?
I started that way. I had no confidence, so I felt that the only way I could build my confidence was to try doing things that scared me. I may sometimes be a little scared, but I am never bored.
What did you learn from your mentors?
A few years ago, a mentor shared a quote from André Gide with me that encapsulates what we are talking about: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” In other words, it is OK, maybe preferable, to be out of my comfort zone to explore the unknown as scary as it may be.
Along the way, it has been extremely important for me to deliberately choose mentors. To me, a good mentor has earned the respect of all who have worked with them, is uplifting, reassuring, and gives me the invaluable guidance and support that I need. I deliberately try to surround myself with the right people. I have been very, very fortunate to find incredible people to encourage me.
As a mentor, what do you advise?
I tell them to deliberately choose their mentors. I also tell them that it is OK to be uncomfortable. Being uncomfortable is the nature of our field. To do great things, we often need to be uncomfortable.
Why do you enjoy working on a team?
I love working on teams, I love to feed off the positive energy of a team whether I lead it or am part of it. In my field, teamwork with a positive energy is incredibly satisfying. Everybody feeds off everybody’s energy, we go further, are stronger, and achieve more. This may not happen often, but when it does it makes it all worth it.
What are the happiest moments in your career?
I am always happiest when the team publishes a paper and all our efforts, are encapsulated in that one well-wrapped and satisfying peer-reviewed paper that is then accessible to everyone online. Every paper we publish feels, to me, the same as a Ph.D. in terms of the work, pain, energy, and then, finally, satisfaction involved.
What do you hope to achieve in your career?
I want to have been a major contributor to the mission by the time the AOS satellites launch.
What do you do for fun?
I do mixed martial arts. I love the ocean, diving, and sailing. I also love going to art galleries, especially to see impressionist paintings to reconnect with my Parisian past.
Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.”Photo courtesy of Meloë Kacenelenbogen Who is your favorite author?
I love Zweig, Kafka, Dostoyevsky, Saint-Exupéry, and Kessel. The latter two wrote a lot about aviators in the early 1900s back in the days when it was new and very dangerous. Those pilots, like Mermoz, were my heroes growing up.
Who would you like to thank?
I would like to thank my family for being my rock.
What are your guiding principles?
To paraphrase Dostoevsky, everyone is responsible to all men for all men and for everything. I have a strong sense of purpose, pride, justice, and honor. This is how I try to live my life for better or for worse.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Explore More
6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 6 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
Article 2 weeks ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’
Article 3 weeks ago Share
Details
Last Updated Oct 22, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Goddard Space Flight Center People of NASA View the full article
-
By NASA
Throughout the life cycles of missions, Goddard engineer Noosha Haghani has championed problem-solving and decision-making to get to flight-ready projects.
Name: Noosha Haghani
Title: Plankton Aerosol Clouds and Ecosystem (PACE) Deputy Mission Systems Engineer
Formal Job Classification: Electrical engineer
Organization: Engineering and Technology Directorate, Mission Systems Engineering Branch (Code 599)
Noosha Haghani is a systems engineer for the Plankton Aerosol Clouds and Ecosystem (PACE) mission at NASA’s Goddard Space Flight Center in Greenbelt, Md. Credit: NASA What do you do and what is most interesting about your role here at Goddard?
As the PACE deputy mission systems engineer, we solve problems every day, all day long. An advantage I have is that I have been on this project from the beginning.
Why did you become an engineer? What is your educational background?
I was always very good at math and science. Both of my parents are engineers. I loved building with Legos and solving puzzles. Becoming an engineer was a natural progression for me.
I have a BS in electrical engineering and a master’s in reliability engineering from the University of Maryland, College Park. I had completed all my course work for my Ph.D. as well but never finished due to family obligations.
How did you come to Goddard?
As a freshman in college, I interned at Goddard. After graduation, I worked in industry for a few years. In 2002, I returned to Goddard because I realized that what we do at Goddard is so much more unique and exciting to me.
My mother also works at Goddard as a software engineer, so I am a second-generation Goddard employee. Early on in my career, my mother and I met for lunch occasionally. Now I am just too busy to even schedule lunch.
Describe the advantages you have in understanding a system which you have worked on from the original design through build and testing?
I came to the PACE project as the architect of an avionics system called MUSTANG, a set of hardware electronics that performs the function of the avionics of the mission including command and data handling, power, attitude control, and more. As the MUSTANG lead, I proposed an architecture for the PACE spacecraft which the PACE manager accepted, so MUSTANG is the core architecture for the PACE spacecraft. I led the team in building the initial hardware and then moved into my current systems engineering role.
Knowing the history of a project is an advantage in that it teaches me how the system works. Understanding the rationale of the decision making we made over the years helps me to better appreciate why we built the system way we did.
How would you describe your problem-solving techniques?
A problem always manifests as some incorrect reading or some failure in a test, which I refer to as evidence of the problem. Problem solving is basically looking at the evidence and figuring out what is causing the problem. You go through certain paths to determine if your theory matches the evidence. It requires a certain level of understanding of the system we have built. There are many components to the observatory including hardware and software that could be implicated. We compartmentalize the problem and try to figure out the root cause systematically. Sometimes we must do more testing to get the problem to recreate itself and provide more evidence.
As a team lead, how do you create and assign an investigation plan?
As a leader, I divide up the responsibilities of the troubleshooting investigation. We are a very large team. Each individual has different roles and responsibilities. I am the second-highest ranking technical authority for the mission, so I can be leading several groups of people on any given day, depending on the issue.
The evidence presented to us for the problem will usually implicate a few subsystems. We pull in the leads for these subsystems and associated personnel and we discuss the problem. We brainstorm. We decide on investigation and mitigation strategies. We then ask the Integration and Test team to help carry out our investigation plan.
As a systems engineer, how do you lead individuals who do not report to you or through your chain of command?
I am responsible for the technical integrity of the mission. As a systems engineer, these individuals do not work for me. They themselves answer to a line manager who is not in my chain of command. I lead them through influencing them.
I use leadership personality and mutual respect to guide the team and convince them that the method we have chosen to solve the problem is the best method. Because I have a long history with the project, and was with this system from the drawing board, I generally understand how the system works. This helps me guide the team to finding the root cause of any problem.
How do you lead your team to reach consensus?
Everything is a team effort. We would be no where without the team. I want to give full credit to all the teams.
You must respect members of your team, and each team member must respect you as a leader. I first try to gather and learn as much as possible about the work, what it takes to do the work, understanding the technical aspects of the work and basically understanding the technical requirements of the hardware. I know a little about all the subsystems, but I rely on my subsystem team leads who are the subject matter experts.
The decision on how to build the system falls on the Systems Team. The subject matter experts provide several options and define risks associated with each. We then make a decision based on the best technical solution for the project that falls within the cost/schedule and risk posture.
If my subject matter experts and I do not agree, we go back and forth and work together as a team to come to a consensus on how to proceed. Often we all ask many questions to help guide out path. The team is built on mutual respect and good communication. When we finally reach a decision, almost everyone agrees because of our collaboration, negotiation and sometimes compromise.
What is your favorite saying?
Better is the enemy of good enough. You must balance perfectionism with reality.
How do you balance perfectionism with reality to make a decision?
Goddard has a lot of perfectionists. I am not a perfectionist, but I have high expectations. Goddard has a lot of conservatism, but conservatism alone will not bring a project to fruition.
There is a level of idealism in design that says that you can always improve on a design. Perfection is idealistic. You can analyze something on paper forever. Ultimately, even though I am responsible for the technical aspects only, we still as a mission must maintain cost and schedule. We could improve a design forever but that would take time and money away from other projects. We need to know when we have built something that is good enough, although maybe not perfect.
In the end, something on paper is great, but building and testing hardware is fundamental in order to proceed. Occasionally the decisions we make take some calculated risk. We do not always have all the facts and furthermore we do not always have the time to wait for all the facts. We must at some point make a decision based on the data we have.
Ultimately a team lead has to make a judgement call. The answer is not in doing bare minimum or cutting corners to get the job done, but rather realizing what level of effort is the right amount to move forward.
Why is the ability to make a decision one of your best leadership qualities?
There is a certain level of skill in being able to make a decision. If you do not make a decision, at some point that inability to make a decision becomes a decision. You have lost time and nothing gets built.
My team knows that if they come to me, I will give them a path forward to execute. No one likes to be stuck in limbo, running in circles. A lot of people in a project want direction so that they can go forward and implement that decision. The systems team must be able to make decisions so that the team can end up with a finished, launchable project.
One of my main jobs is to access risk. Is it risky to move on? Or do I need to investigate further? We have a day-by-day risk assessment decision making process which decides whether or not we will move on with the activities of that day.
As an informal mentor, what is the most important advice you give?
Do not give up. Everything will eventually all click together.
What do you like most about your job?
I love problem solving. I thrive in organized chaos. Every day we push forward, complete tasks. Every day is a reward because we are progressing towards our launch date.
Who inspires you?
The team inspires me. They make me want to come to work every day and do a little bit better. My job is very stressful. I work a lot of hours. What motivates me to continue is that there are other people doing the same thing, they are amazing. I respect each of them so much.
What do you do for fun?
I like to go to the gym and I love watching my son play sports. I enjoy travel and I love getting immersed in a city of a different country.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Oct 08, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) People of NASA Explore More
6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’
Article 7 days ago 8 min read Julie Rivera Pérez Bridges Business, STEM to ‘Make the Magic Happen’
Article 2 weeks ago 5 min read Rob Gutro: Clear Science in the Forecast
Article 3 weeks ago View the full article
-
By NASA
9 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Oceans group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 13, 2024. NASA Ames/Milan Loiacono Faculty Advisor: Dr. Henry Houskeeper, Woods Hole Oceanographic Institute
Graduate Mentor: Lori Berberian, University of California, Los Angeles
Lori Berberian, Graduate Mentor
Lori Berberian graduate student mentor for the 2024 SARP West Oceans group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
Emory Gaddis
Leveraging High Resolution PlanetScope Imagery to Quantify oil slick Spatiotemporal Variability in the Santa Barbara Channel
Emory Gaddis, Colgate University
Located within the Santa Barbara Channel of California, Coal Oil Point is one of the world’s largest hydrocarbon seep fields. The area’s natural hydrocarbon seepage and oil production have sustained both scientific interest and commercial activity for decades. Historically, indigenous peoples in the region utilized the naturally occurring tar for waterproofing baskets, establishing early evidence of the natural presence of hydrocarbons long before modern oil extraction began. Gaseous hydrocarbons are released from the marine floor through the process of seeping, wherein a buildup of reservoir pressure relative to hydrostatic pressure causes bubbles, oily bubbles, and droplets to rise to the surface. This hydrocarbon seepage is a significant source of Methane CH4—a major greenhouse gas––emissions into the atmosphere. Current limitations of optical remote sensing of oil presence and absence in the ocean leverage geometrical as well as biogeochemical factors and include changes in observed sun glint, sea surface damping, and wind roughening due to changes in surface oil concentrations. We leverage high-resolution (3m) surface reflectance observations obtained from PlanetScope to construct a time series of oil slick surface area spanning 2017 to 2023 within the Coal Oil Point seep field. Our initial methods are based on manual annotations performed within ArcGIS-Pro. We assess potential relationships between wind speed and oil slick surface area to support a sensitivity analysis of our time series. Correcting for confounding outside factors (e.g., wind speed) that modify oil slick surface area improves determination of oil slick surface area and helps test for changes in natural seepage rates and whether anthropogenic activities, such as oil drilling, alter natural oil seepage. Future investigations into oil slick chemical properties and assessing how natural seepage impacts marine and atmospheric environments (e.g., surface oil releases methane into the atmosphere) can help to inform the science of optimizing oil extraction locations.
Rachel Emery
Investigating Airborne LiDAR Retrievals of an Emergent South African Macroalgae
Rachel Emery, The University of Oklahoma
Right now, the world is facing an unprecedented biodiversity crisis, with areas of high biodiversity at the greatest risk of species extinction. One of these biodiversity hotspots, the Western Cape Province of South Africa, features one of the world’s largest unique marine ecosystems due to the extensive growth of canopy forming kelps, such as Macrocystis and Ecklonia, which provide three-dimensional structure important for fostering biodiversity and productivity. Canopy-forming kelps face increasing threats by marine heatwaves and pollution related to climate change and local water quality perturbation. Though these ecosystems can be monitored using traditional field surveying methods, remote sensing via airborne and satellite observations support improved spatial coverage and resample rates, plus extensive historical continuity for tracking multidecadal scale changes. Passive remote sensing observations—such as those derived using observations from NASA’s Airborne Visible-Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) —provide high resolution, hyperspectral imagery of oceanic environments anticipated to help characterize community dynamics and quantify macroalga physiological change. Active remote sensing observations, e.g., Light Detection and Ranging (LiDAR), are less understood in terms of applications to marine ecosystems, but are anticipated to support novel observations of vertical structure not supported using passive aquatic remote sensing. Here we investigate the potential to observe an emergent canopy-forming macroalgae (i.e., Ecklonia, which can extend more than a decimeter above the ocean’s surface) using NASA’s Land, Vegetation, and Ice sensor (LVIS), which confers decimeter-scale vertical resolution. We validate LVIS observations using matchup observations from AVIRIS-NG imagery to test whether LiDAR remote sensing can improve monitoring of emergent kelps in key biodiversity regions such as the Western Cape.
Brayden Lipscomb
Vertical structure of the aquatic light field based on half a century of oceanographic records from the southern California Current
Brayden Lipscomb, West Virginia University
Understanding the optical properties of marine ecosystems is crucial for improving models related to oceanic productivity. Models relating satellite observations to oceanic productivity or subsurface (e.g., benthic) light availability often suffer from uncertainties in parameterizing vertical structure and deriving columnar parameters from surface observations. The most accurate models use in situ station data, minimizing assumptions such as atmospheric optical thickness or water column structure. For example, improved accuracy of satellite primary productivity models has previously been demonstrated by incorporating information on vertical structure obtained from gliders and floats. We analyze vertical profiles in photosynthetically available radiation (PAR) obtained during routine surveys of the southern California Current system by the California Cooperative Oceanic Fisheries Investigation (CalCOFI). We find that depths of 1% and 10% light availability show coherent log-linear relationships with attenuation measured near surface (i.e., within the first 10 m), despite vertical variability in water column constituent concentrations and instrumentation challenges related to sensitivity, self-shading, and ship adjacency. Our results suggest that subsurface optical properties can be more reliably parameterized from near-surface measurements than previously understood.
Dominic Bentley
Comparing SWOT and PACE Satellite Observations to Assess Modification of Phytoplankton Biomass and Assemblage by North Atlantic Ocean Eddies
Dominic Bentley, Pennsylvania State University
Upwelling is the shoaling of the nutricline, thermocline, and isopycnals due to advection by eddies of the surface ocean layer. This shoaling effect leads to an increase in the productivity of algal blooms in a given body of water. Mesoscale to deformation scale eddy circulation modulates productivity based on latitude, season, direction, and other physical factors. However, many processes governing the effects of eddies on the ocean microbial environment remain unknown due to limitations in observations linking eddy strength and direction with productivity and ocean biogeochemistry. Currently, satellites are the only ocean observing system that allows for broad spatial coverage with high resample rates, albeit with limitations due to cloud obstructions (including storms that may stimulate productivity) and to observations being limited to the near-surface. A persisting knowledge gap in oceanography stems from limitations in the spatial resolution of observations resolving submesoscale dynamics. The recent launch of the Surface Water and Ocean Topography (SWOT) mission in December of 2022 supports observations of upper-ocean circulation with increased resolution relative to legacy missions (e.g. TOPEX/Poseidon, Jason-1, OSTM/Jason-2). Meanwhile, the launch of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite in February of 2024 is anticipated to improve knowledge of ocean microbial ecosystem dynamics. We match up SWOT observations of sea surface height (SSH) anomalies—informative parameters of eddy vorticity—with PACE observations of surface phytoplankton biomass and community composition to relate the distribution of phytoplankton biomass and assemblage structure to oceanic eddies in the North Atlantic. We observe higher concentrations of Chlorophyll a (Chla) within SSH minima indicating the stimulation of phytoplankton productivity by cyclonic features associated with upwelling-driven nutrient inputs.
Abigail Heiser
Assessing EMIT observations of harmful algae in the Salton Sea
Abigail Heiser, University of Wisconsin- Madison
In 1905, flooding from the Colorado River gave rise to what would become California’s largest lake, the Salton Sea. Today, the majority of its inflow is sourced from agricultural runoff, which is rich in fertilizers and pollutants, leading to elevated lake nutrient levels that fuel harmful algal blooms (HAB) events. Increasingly frequent HAB events pose ecological, environmental, economic, and health risks to the region by degrading water quality and introducing environmental toxins. Using NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer we apply two hyperspectral aquatic remote sensing algorithms; cyanobacteria index (CI) and scattering line height (SLH). These algorithms detect and characterize spatiotemporal variability of cyanobacteria, a key HAB taxa. Originally designed to study atmospheric mineral dust, EMIT’s data products provide novel opportunities for detailed aquatic characterizations with both high spatial and high spectral resolution. Adding aquatic capabilities for EMIT would introduce a novel and cost-effective tool for monitoring and studying the drivers and timing of HAB onset, to improve our understanding of environmental dynamics.
Emma Iacono
Reassessing multidecadal trends in Water Clarity for the central and southern California Current System
Emma Iacono, North Carolina State University
Over the past several decades, the world has witnessed a steady rise in average global temperatures, a clear indication of the escalating effects of climate change. In 1990, Andrew Bakun hypothesized that unequal warming of sea and land surface temperatures would increase pressure gradients and lead to rising rates of alongshore upwelling within Eastern Boundary Currents, including the California Current System (CCS). An anticipated increase in upwelling-favorable winds would have profound implications for the productivity of the CCS, wherein upwelled waters supply nutrient injections that sustain and fuel coastal ocean phytoplankton stocks. Increasing upwelling, therefore, is anticipated to increase the turbidity of the upper ocean, corresponding with greater phytoplankton concentrations. Historical observations of turbidity are supported by observations obtained using a Secchi Disk, i.e., an opaque white instrument lowered into the water column. Observations of Secchi depth—or the depth at which light reflected from the Secchi Disk is no longer visible from the surface—provide a quantification of light penetration into the euphotic zone. The shoaling, or shallowing, of Secchi disk depths was previously reported for inshore, transition, and offshore waters of the central and southern CCS for historical observations spanning 1969 – 2007. Here, we reassess Secchi disk depths during the subsequent period spanning 2007 to 2021 and test for more recent changes in water clarity. Additionally, we evaluate the seasonality and spatial patterns of Secchi disk trends to test for potential changes to oceanic microbial ecology. Indications of long-term trends in some of the coastal domains assessed were found. Generally, our findings suggest a reversal of the trends previously reported. In particular, increases in water clarity likely associated with a recent marine heatwave (MHW) may be responsible for recent changes in Secchi disk depth observations, illustrating the importance of MHW events for modifying the CCS microbial ecosystem.
Click here watch the Atmospheric Aerosols Group presentations.
Click here watch the Terrestrial Ecology Group presentations.
Click here watch the Whole Air Sampling (WAS) Group presentations.
Return to 2024 SARP West Closeout Share
Details
Last Updated Sep 25, 2024 Related Terms
General View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.