Jump to content

Brr, It’s Cold in Here! NASA’s Cryo Efforts Beyond the Atmosphere


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

grc-2019-c-08020.jpg?w=2048
A 2019 image of the SHIIVER tank sitting inside the In-Space Propulsion Facility’s vacuum chamber at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. The tank was part of a Cryogenic Fluid Management project effort to test the tank at extreme temperatures and ensure the new technologies kept the propellants inside cold and in a liquid state.
Credit: NASA

Establishing sustained operations at the Moon and Mars presents a multitude of opportunities and challenges NASA has yet to encounter. Many of these activities require new technologies and processes to ensure the agency is prepared for its ambitious Artemis missions and those beyond.

One of those challenges is working with cryogenic fluids, meaning fluids existing in a liquid state between minus 238 degrees Fahrenheit and absolute zero (minus 460 F). These fluids – liquid hydrogen (the most difficult to work with), methane, and oxygen – are vital to spacecraft propulsion and life support systems. The fluids may also be produced in the future on the lunar and Martian surfaces via in-situ resource utilization (ISRU).

Human exploration in deep space requires storing large amounts of cryogenic fluids for weeks, months, or longer, as well as transferring between spacecraft or fuel depots in orbit and on the surface. Each aspect is challenging, and, to date, large amounts of cryogenic fluids have only been stored for hours in space. Engineers working in NASA’s Cryogenic Fluid Management (CFM) portfolio – led by Technology Demonstration Missions within the Space Technology Mission Directorate and managed at the agency’s Glenn Research Center in Cleveland and Marshall Space Flight Center in Huntsville, Alabama – are solving those issues ahead of future missions.

“This is a task neither NASA, nor our partners, have ever done before,” said Lauren Ameen, deputy CFM Portfolio manager. “Our future mission concepts rely on massive amounts of cryogenic fluids, and we have to figure out how to efficiently use them over long durations, which requires a series of new technologies far exceeding today’s capabilities.”

Cryogenic Challenges

For a cryogenic fluid to be useable, it must remain in a frigid, liquid state. However, the physics of space travel – moving in and out of sunlight and long stays in low gravity – make keeping those fluids in a liquid state and knowing how much is in the tank complicated.  

The heat sources in space ­– like the Sun and the spacecraft’s exhaust – create a hot environment inside and around storage tanks causing evaporation or “boiloff.” When fluid evaporates, it can no longer efficiently fuel a rocket engine. It also increases the risk of leakage or, even worse, a tank rupture.

Being unsure of how much gas is left in the tank isn’t how our explorers want to fly to Mars. Low gravity is challenging because the fuel wants to float around – also known as “slosh” – which makes accurately gauging the amount of liquid and transferring it very difficult.

“Previous missions using cryogenic propellants were in space for only a few days due to boiloff or venting losses,” Ameen noted. “Those spacecraft used thrust and other maneuvers to apply force to settle propellant tanks and enable fuel transfers. During Artemis, spacecraft will dwell in low gravity for much longer and need to transfer liquid hydrogen in space for the first time, so we must mitigate boiloff and find innovative ways to transfer and measure cryogenic propellants.”

So, What’s NASA Doing?

NASA’s CFM portfolio encompasses 24 development activities and investments to reduce boiloff, improve gauging, and advance fluid transfer techniques for in-space propulsion, landers, and ISRU. There are four near-term efforts taking place on the ground, in near-Earth orbit, and soon on the lunar surface.  

Flight Demos

In 2020, NASA awarded four CFM-focused Tipping Point contracts to American industry – Eta Space, Lockheed Martin, SpaceX, and United Launch Alliance – to assist in developing and demonstrating CFM technologies in space. Each company is scheduled to launch its respective demonstration in either 2024 or 2025, performing multiple tests using liquid hydrogen to validate technologies and processes.

Radio Frequency Mass Gauge

To improve gauging, NASA has developed Radio Frequency Mass Gauges (RFMG) to allow for more accurate fluid measurement in low-gravity or low-thrust conditions. Engineers do this by measuring the electromagnetic spectrum, or radio waves, within a spacecraft’s tank throughout the mission, comparing them to fluid simulations to accurately gauge remaining fuel.

The RFMG has been proven in ground tests, sub-orbital parabolic flight, and on the International Space Station, and it will soon be tested on the Moon during an upcoming Commercial Lunar Payload Services flight with Intuitive Machines. Once demonstrated in the lunar environment, NASA will continue to develop and scale the technology to enable improved spacecraft and lander operations.

Cryocoolers

Cryocoolers act like heat exchangers for large propellant tanks to mitigate boiloff when combined with innovative tank insulation systems. With industry partners, like Creare, NASA has begun testing high-capacity cryocooler systems that pump the “working” fluid through a network of tubes installed on the tank to keep it cool. NASA plans to increase tank size and capabilities to meet mission requirements before conducting future flight demonstrations.

CryoFill

NASA is also developing a liquefaction system to turn gaseous oxygen into liquid oxygen on the surface of the Moon or Mars to refuel landers using propellant produced in situ. This approach uses various methods to cool oxygen down to critical temperature (at least minus 297 degrees Fahrenheit), where it condenses, turning from a gas to a liquid. Initial development and testing have proven NASA can do this efficiently, and the team continues to scale the technology to relevant tank sizes and quantities for future operations.

Ultimately, NASA efforts to develop and test CFM systems that are energy-, mass-, and cost-efficient are critical to the success of the agency’s ambitious missions to the Moon, Mars, and beyond. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July.
       NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.
      NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.
      One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.
      The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.
      “We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”
      Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.
      “It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”
      This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.
      The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.
      The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.
      More About PREFIRE
      The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.
      To learn more about PREFIRE, visit:
      https://science.nasa.gov/mission/prefire/
      5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-116
      Share
      Details
      Last Updated Sep 03, 2024 Related Terms
      PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Polar Explore More
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
      Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Space Delta 13’s Detachment 2, in collaboration with the U.S. Air Force’s Holm Center, has played a key role in educational development efforts here in Air Force ROTC, Officer Training School, and in both the Air Force and Space Force Junior ROTC programs.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Idaho State University class of 2025 poses with their new hands-on learning tool, the DC-8 aircraft, after it was retired from NASA in May 2024 and arrived in Pocatello, Idaho. The university will use the aircraft to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program.Idaho State University In May 2024, Idaho State University’s class of 2025 received a new learning tool from NASA. The DC-8 aircraft served the world’s scientific community for decades as a platform under NASA’s Airborne Science Program before retiring to Idaho State University (ISU) to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program. 
      “The DC-8 has quickly become a cornerstone of our Aircraft Maintenance Technology program at ISU,” said Jake Dixon, Director of Marketing and Recruitment at the ISU College of Technology. “It has already enhanced our summer classes ahead of its full integration with the start of the new school year this fall.” 
      The DC-8 flew its final flight from NASA’s Armstrong Flight Research Center in Edwards, California to Idaho State University in Pocatello, Idaho in May 2024. That flight represented the retirement of the aircraft after 37 years of supporting airborne science missions as a NASA aircraft. 
      “The opportunity for students to interact firsthand with the aircraft’s systems and features significantly extends their learning beyond what theory or textbooks can provide,” Dixon said.
      The DC-8 flies low for the last time over NASA’s Armstrong Flight Research Center in Edwards, California, before it retires to Idaho State University in Pocatello, Idaho. The DC-8 is providing real-world experience to train future aircraft technicians at the college’s Aircraft Maintenance Technology Program.NASA/Genaro Vavuris The DC-8 served as an educational platform for years. Beginning in 2009, the DC-8 functioned as an airborne science laboratory for NASA’s Student Airborne Research Program (SARP), where rising-senior undergraduates were selected to participate in a real science campaign and acquire hands-on research experience. The educational impact of the DC-8 is evident in the professional growth of scientists who have experienced it. 
      “Almost everything I’ve learned about using an airplane to collect scientific data can be linked back to my time flying projects on the DC-8.” says Jonathan Zawislak, Flight Director with the Aircraft Operations Center at the National Oceanic and Atmospheric Administration (NOAA). “It has left an indelible mark on the Earth science community and no doubt paved the way for a new generation of scientists, as it did for me and my career as a science aviator.”
      NASA Armstrong’s Student Airborne Research Program celebrated 15 years of success in 2023. An eight-week summer internship program, SARP offered upper-level undergraduate students the opportunity to acquire hands-on research experience as part of a scientific campaign using NASA Airborne Science Program flying science laboratories – aircraft outfitted specifically for research projects. NASA/Carla Thomas Real-life platforms like the DC-8 are an exciting and meaningful learning tool that enable college students to go beyond the textbook, and they make a lasting impact on communities adjacent to its activities. 
      “We have seen so much enthusiasm surrounding the DC-8’s arrival that we are organizing an open house in the future to allow the community and aviation enthusiasts alike to explore this historic aircraft,” said Dixon. “Doing so will help preserve the remarkable legacy of the DC-8, ensuring it continues to inspire and educate for years to come.” 
      Whether as a science platform or as a unique aircraft, the DC-8 has a legacy that continues to inspire and educate generations of scientists, engineers, and aviators. 
      Learn more about NASA’s SARP program 
      Learn more about the retired DC-8 aircraft Learn more about NASA’s Armstrong Flight Research Center
      Share
      Details
      Last Updated Aug 22, 2024 Related Terms
      Armstrong Flight Research Center Science in the Air Science Mission Directorate Explore More
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team headed deep into the backcountry of…
      Article 2 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking…
      Article 1 day ago 2 min read Hubble Spots Billowing Bubbles of Stellar Floss
      A bubbling region of stars both old and new lies some 160,000 light-years away in…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Meet four employees from NASA’s Glenn Research Center who have a personal connection to aviation, at work and beyond.Credit: (Left to right): Waldo Acosta, Jared Berg, Lori Manthey, Lindsay Kaldon The first “A” in NASA stands for aeronautics. Glenn Research Center in Cleveland is just one of several NASA centers conducting revolutionary research to make flight cleaner, safer, and quieter.
      But an interest in flying goes beyond the professional for many at NASA. Meet a handful of NASA Glenn employees who have a personal connection to aviation, at work and beyond.

      Jared Berg
      “I think my flying and engineering work positively influence each other. Flying integrates a lot of technical disciplines and serves as a real-word application of things I know theoretically about aerodynamics or heat transfer.”
      jared berg
      Thermal Subsystem Manager for Gateway’s Power and Propulsion Element

      Left photo: Jared Berg flying above the clouds in the the NASAIRS Flying Club’s Cessna 172. Right photo: A view out the plane window.Credit: Jared Berg Planting the Seed: Berg grew up reading aviation books with his family and building model planes. Attending the EAA AirVenture airshow in Oshkosh, Wisconsin, throughout childhood inspired him to pursue flight training once he had a full-time NASA job.
      Joining the Club: Berg is currently a member of the NASAIRS Flying Club at NASA Glenn, which he says helps make flying more accessible and lets him constantly learn from other pilots.
      Flying High: Berg has now been flying recreationally for over a decade and considers it a part of his everyday life. “Flying allows an escape from the mundane and brings a sense of adventure to traveling,” Berg said. “You also get to experience nature, specifically weather but also the land you’re flying over, in a way that’s relatively raw and somehow personal.”

      Lindsay Kaldon
      "I love the feeling after takeoff and when you’ve reached cruising altitude. It’s as if all the stresses of life wash away when you’re up there in the sky. Being up in the clouds with all the beauty of the Earth below, it’s as if you’re in heaven.”
      Lindsay Kaldon
      Fission Surface Power Project Manager
      Left photo: Lindsay Kaldon after her first solo flight. Right photo: Kaldon celebrates passing her private pilot exam.Credit: Lindsay Kaldon Air Force and Astronauts: Kaldon’s father was an Air Force F-16 crew chief and a member of the Thunderbirds demonstration team, so Kaldon was no stranger to jets growing up. “Every day was an airshow living on the base that they trained out of,” Kaldon said. After earning a bachelor’s degree in electrical engineering, Kaldon joined the Air Force herself with hopes of one day becoming an astronaut.
      Going Solo: Kaldon later earned her private pilot’s license and says she’ll always remember her first solo cross-country flight. She chose Kitty Hawk, the site of the Wright brothers’ first flight, as her destination.
      Keeping the Energy: A monument that stands along the runway at Kitty Hawk is inscribed with words Kaldon remembers whenever solving difficult challenges through her work at NASA. “It says, ‘Achieved by Dauntless Resolution and Unconquerable Faith.’ The Wright brothers were faced with a lot of doubters who didn’t think flight was possible. Yet they proved them wrong and never gave up,” Kaldon said. “I love that. When things get tough, I just close my eyes and think about that phrase.”
      Lori Manthey
      “I encourage anyone who has an interest in flying to take a discovery flight at your local airport. If you get bitten by the flying bug, it just may become a life-long obsession. Ask me how I know!”
      Lori Manthey
      Chief of Administrative Services and Exchange Operations Manager
      Left photo: Lori Manthey with a Grumman Cheetah plane. Right photo: Lori Manthey at the Grumman Cheetah controls.Credit: Lori Manthey Head in the Clouds: After a discovery flight in a small Cessna 150 plane, Manthey was hooked on flying. On weekends and evenings after beginning a full-time NASA job, she hopped in a Piper Tomahawk single-engine trainer at Lorain County Regional Airport to earn her private pilot certificate. “I love the feeling of floating in the air and seeing the world below,” she said.
      Women in Aero: Manthey is passionate about advancing and supporting female pilots and currently serves as membership chair of the Lake Erie chapter of the Ninety-Nines, an organization started by Amelia Earhart in 1929. She is also a member of the Cleveland chapter of Women in Aviation.
      Looking to the Future: Every year, Manthey participates in Girls in Aviation Day at Cleveland’s Burke Lakefront Airport to introduce girls to the world of aviation. “I think it is so important to help encourage young women and girls to become part of the next generation of female pilots,” she said.
      Back in the Cockpit: Manthey is currently working to earn her instrument rating, which will let her fly “blind” in cloudy and foggy weather conditions.

      Waldo J. Acosta

      “Flying gives me a thrill. The perspective you’re able to see of the world from up in the sky is a special feeling. Aircraft have the ability to take us all over the world so we can experience different cultures and meet different people, and that has shaped me into who I am today.”
      Waldo J. Acosta
      Icing Research Tunnel Lead Facility Engineer
      Left photo: Waldo J. Acosta, right, stands beside his father before taking him for a ride in a DA20 aircraft. Top right photo: A young Acosta and his father at the EAA AirVenture airshow in Oshkosh, Wisconsin. Lower right photo: Acosta (center) works with colleagues Tadas Bartkus (left) and Emily Timko in the control room of NASA Glenn Research Center’s Icing Research Tunnel. Credit: Waldo J. Acosta, NASA/Jef Janis Family Ties: Throughout Acosta’s childhood, Acosta’s father, a former researcher at NASA Glenn, brought his family along on work trips to the EAA AirVenture airshow in Oshkosh, Wisconsin. “I fell in love with everything related to flying during those trips, and they set the tone early on my path to working in aviation,” Acosta said.
      Next Steps: Acosta started taking flying lessons while studying aerospace engineering at The Ohio State University, eventually receiving his private pilot’s license.
      Safety First: Overseeing testing and maintenance operations at NASA Glenn’s Icing Research Tunnel, Acosta is now directly involved in aviation safety research. The facility, the longest-running icing wind tunnel in the world, helps NASA and industry study how ice affects aircraft and test ice protection systems and tools.
      Flying Full Circle: Acosta still attends airshows every chance he can get and has taken both his father and wife soaring into the clouds.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      In the heart of NASA’s Johnson Space Center in Houston, a team of photographers, imagery acquisition specialists, analytic scientists, and graphic designers work together to create visual narratives that capture the defining moments of space exploration with creativity and precision. 

      From the Apollo missions to the Artemis campaign, these images, videos, and graphics chronicle NASA’s rich history and the people behind its monumental missions. 
      Official portrait of the Artemis II crew.NASA/Josh Valcarcel Each team at Johnson within Mission Imagery, the ISAG (Image Science and Analysis Group), and NASA’s OCOMM (Office of Communications) plays a role in this effort, ensuring the accuracy and artistry of visual narratives that have inspired generations.  

      “Behind every great leap for mankind, there is the courage, determination, and teamwork of people committed to pushing the boundaries of what’s possible,” said NASA photographer Josh Valcarcel.  
      Space Shuttle Enterprise atop the Shuttle Carrier Aircraft as it flies over New York City on April 27, 2012. NASA/Robert Markowitz “We consider ourselves exceptionally fortunate to contribute our passion to an esteemed agency, aiming to evoke joy and enduring memories through our imagery,” said NASA photographer Robert Markowitz.  

      Operating eight camera systems, the imagery acquisition group captures a range of visuals, from HD video and high-speed digital motion pictures to spherical 360 panoramas. These visuals document everything from engineering tests to astronaut training and mission control operations. The team is certified to fly on parabolic flights, T-38 jets, and helicopters, capturing pivotal moments in space exploration history. 

      “The duty to bear witness to events or conversations and preserve these moments in time – not only for those who cannot, but for the record books – is a noble cause,” said NASA photographer Helen Arase Vargas.  

      After capturing the imagery, the photo operations team processes these visuals using advanced software to enhance quality, perform color correction, and ensure they meet NASA’s high standards. Every frame is meticulously archived, including photos taken by astronauts aboard the International Space Station, preserving them for future generations. 

      “None of what we deliver would be possible without the work of the photo laboratory,” said Mark Sowa, the imagery acquisition group lead who brings over three decades of experience in scientific photography to his role.  
      The team also manages the care and handling of original Apollo mission films, which are preserved in a specially built cold storage vault. The goal is to preserve Apollo era spaceflight films – in both the digital and physical formats – for generations to come. 
      The cold storage film vault at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz The ISAG is charged with a different but equally critical mission. This team of scientists performs complex and in-depth analysis of engineering imagery. Their work involves evaluating space vehicle performance, dynamic events, and anomalies by measuring distances, sizes, motion, and hardware conditions to uncover crucial mission insights.  

      Their data visualization techniques bring these analyses to life, contributing to successful mission execution.

      “At NASA we often say ‘the camera is the mission’ because in every image, there’s a story to be told – whether it’s one of engineering analysis or human inspiration,” said Dr. Kenton Fisher, the ISAG lead. “Our work helps ensure crew safety and provides insights that drive the next giant leap in space exploration.”
      The Artemis I test flight marks the safe return of the Orion spacecraft to Earth.NASA/Josh Valcarcel NASA’s Orion spacecraft for Artemis I after splashdown in the Pacific Ocean on December 11, 2022.NASA/James Blair NASA’s OCOMM graphics team works closely with the imagery acquisition group, astronauts, and subject matter experts to create visuals that symbolize NASA’s missions and values.

      From patches to educational infographics, their art reaches museums and schools nationwide, inspiring future generations and showcasing NASA’s commitment to exploration, innovation, and education. 
      A compilation of NASA’s graphics team highlights from 2023. “Every design we create is a piece of a larger narrative, helping to tell the story of space exploration in a way that’s engaging and accessible to everyone,” said Sean Collins, Johnson’s lead graphic designer. 

      The collaborative efforts of these teams ensure that NASA’s achievements are not just recorded but celebrated worldwide. 
      NASA team members participate in the National Collegiate Athletic Association Championship Game opening flag ceremonies on January 8, 2024, at NRG Stadium. NASA/Helen Arase Vargas NASA photographer Bill Stafford recalls a moment of awe when capturing the Moon juxtaposed with the U.S. flag above the Mission Control Center, a symbol of America’s space achievements. 

      “I feel a weight because my job is important,” he said. “I want people to look at my pictures and see what I was able to see.” 
      The Moon juxtaposed with the U.S. flag above the Mission Control Center at NASA’s Johnson Space Center in Houston. NASA/Bill Stafford A T-38 formation flyover as NASA’s Space Launch System rocket sits on the launch pad at Kennedy Space Center in Florida.NASA/Josh Valcarcel Space Shuttle Endeavour is ferried by NASA’s Shuttle Carrier Aircraft over Ellington Field on September 20, 2012.NASA/Bill Stafford Neil Armstrong speaks at the Rotary National Award for Space Achievement dinner in Houston, Texas. NASA/Bill Stafford Expedition 1 crew members (from left) William Shepherd, Yuri Gudzenko and Sergei Krikalev train in the building 9 shuttle Crew Compartment Trainer on May 12, 2000. NASA/James Blair NASA T-38 aircraft are parked on the flight line at Ellington Field during sunrise, May 7, 2005.NASA/James Blair A NASA engineer installs VIPER’s (Volatiles Investigating Polar Exploration Rover) starboard radiator in Johnson’s clean room. NASA/Helen Arase Vargas Engineers work in the VIPER (Volatiles Investigating Polar Exploration Rover) clean room at Johnson Space Center. NASA/Helen Arase Vargas The cast members from the Apollo 13 movie in zero gravity aboard NASA’s KC-135 aircraft.NASA/Robert Markowitz NASA astronaut John Glenn on his second spaceflight as part of the STS-95 crew.NASA/Robert Markowitz  View the full article
  • Check out these Videos

×
×
  • Create New...