Jump to content

Physics-based Modeling and Tool Development for the Characterization and Uncertainty Quantification of Crater Formation and Ejecta Dynamics due to Plume-surface Interaction


NASA

Recommended Posts

  • Publishers

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

David Scarborough
Auburn University

Professor Scarborough will develop and implement tools to extract critical data from experimental measurements of plume surface interaction (PSI) to identify and classify dominant regimes, develop physics-based, semi-empirical models to predict the PSI phenomena, and quantify the uncertainties. The team will adapt and apply state-of-the-art image processing techniques such as edge detection, 3D-stereo reconstruction to extract the cratering dynamics, and particle tracking velocimetry to extract ejecta dynamics and use supervised Machine Learning algorithms to identify patterns. The models developed will establish a relationship between crater geometry and ejecta dynamics, including quantified uncertainties.

Back to ESI 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Space Delta 13’s Detachment 2, in collaboration with the U.S. Air Force’s Holm Center, has played a key role in educational development efforts here in Air Force ROTC, Officer Training School, and in both the Air Force and Space Force Junior ROTC programs.

      View the full article
    • By NASA
      2 min read
      Hubble Traces Star Formation in a Nearby Nebula
      NASA, ESA, and L. C. Johnson (Northwestern University); Image Processing: Gladys Kober (NASA/Catholic University of America) NGC 261 blooms a brilliant ruby red against a myriad of stars in this new image from NASA’s Hubble Space Telescope. Discovered on Sept. 5, 1826 by Scottish astronomer James Dunlop, this nebula is located in one of the Milky Way’s closest galactic companions, the Small Magellanic Cloud (SMC). The ionized gas blazing from within this diffuse region marks NGC 261 as an emission nebula. It is home to numerous stars hot enough to irradiate surrounding hydrogen gas, causing the cloud to emit a pinkish-red glow.
      This inset image shows the location of NGC 261 within the Small Magellanic Cloud. NASA, ESA, L. C. Johnson (Northwestern University), and ESO/VISTA VMC; Image Processing: Gladys Kober (NASA/Catholic University of America) Hubble turned its keen eye toward NGC 261 to investigate how efficiently stars form in molecular clouds, which are extremely dense and compact regions of gas and dust. These clouds often consist of large amounts of molecular hydrogen — cold areas where most stars form. However, measuring this raw fuel of star formation in stellar nurseries is a challenge because molecular hydrogen doesn’t radiate easily. Since it is difficult to detect, scientists instead trace other molecules present in the molecular clouds.
      The SMC hosts a gas-rich environment of young stars along with trace amounts of carbon monoxide (CO), a chemical correlated with hydrogen and often used to identify the presence of such clouds. Using the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3), Hubble imaged these stars in the southwest portion of the SMC where NGC 261 resides. The combined power of ACS and WFC3 allowed scientists to closely examine the nebula’s star-forming properties through its CO content at optical and near-infrared wavelengths. This research helps astronomers better understand how stars form in our home galaxy and others in our galactic neighborhood.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 28, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Perseverance Kicks off the Crater Rim Campaign!
      Mastcam-Z mosaic made of 59 individual Mastcam-Z images showing the area Perseverance will climb in the coming weeks on its way to Dox Castle, the rover’s first stop on the crater rim. NASA/JPL-Caltech/ASU/MSSS Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater rim!
      For the last 2 months, the Perseverance rover has been exploring the Neretva Vallis region of Jezero Crater, where rocks with interesting popcorn-like textures and “leopard spot” patterns have fascinated us all. Now, the rover has begun its long ascent up the crater rim, and is officially kicking off a new phase of exploration for the mission.
      Strategic (longer-term) planning is particularly important for the Mars 2020 mission given the crucial role Perseverance plays in collecting samples for Mars Sample Return, and the Mars 2020 team undertakes this planning in the form of campaigns. Perseverance has now completed four such campaigns— the Crater Floor, Delta Front, Upper Fan and Margin Unit campaigns respectively— making the Crater Rim Campaign next in line. Given its broad scope and the wide diversity of rocks we expect to encounter and sample along the way, it may be the most ambitious campaign the team has attempted so far.
      The team also has less information from orbiter data to go on compared to previous campaigns, because this area of the crater rim does not have the high-resolution, hyperspectral imaging of CRISM that helped inform much of our geological unit distinctions inside the crater. This means that Mastcam-Z multispectral and SuperCam long-distance imaging will be particularly useful for understanding broadscale mineralogical distinctions between rocks as we traverse the crater rim. Such imaging has already proved extremely useful in the Neretva Vallis area, where at Alsap Butte we observed rocks that appeared similar to each other in initial imaging, but actually display an Andy-Warhol-esque array of color in multispectral products, indicative of varied mineral signatures. 
      Our next stop is Dox Castle where Perseverance will investigate the contact between the Margin Unit and the Crater rim, as well as rubbly material that may be our first encounter with deposits generated during the impact that created Jezero crater itself. Later in the campaign, we will investigate other light-toned outcrops that may or may not be similar to those encountered at Bright Angel, as well as rocks thought to be part of the regionally extensive olivine-carbonate-bearing unit, and whose relationship to both Séítah and the Margin Unit remains an interesting story to unravel. Throughout this next phase of exploration, comparing and contrasting the rocks we see on the rim to both each other and those previously explored in the mission will be an important part of our scientific investigations.
      The whole Mars 2020 science team is incredibly excited to be embarking on the next phase of Perseverance’s adventure, and we expect these results, and the samples we collect along the way, to inform our understanding of not just Jezero itself, but the planet Mars as a whole. We can’t wait to share what we find!
      Written by Eleni Ravanis, PhD Candidate and Graduate Research Assistant at University of Hawaiʻi at Mānoa 
      Share








      Details
      Last Updated Aug 27, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4284–4286: Environmental Science Extravaganza


      Article


      1 day ago
      3 min read Sols 4282-4283: Bumping Away from Kings Canyon


      Article


      1 day ago
      2 min read Sols 4280-4281: Last Call at Kings Canyon


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Credit: NASA NASA has awarded $6 million to 20 teams from emerging research institutions across the United States supporting projects that offer career development opportunities for science, technology, engineering, and mathematics (STEM) students.
      This is the third round of seed funding awarded through the agency’s MOSAICS (Mentoring and Opportunities in STEM with Academic Institutions for Community Success) program, formerly the Science Mission Directorate Bridge Program. The program seeks to expand access to NASA research opportunities in the science and engineering disciplines, as well as to NASA’s workforce.
      “The STEM workforce continues to grow, and today’s students, studying at a variety of higher-education institutions — community colleges, primarily undergraduate institutions, and minority-serving institutions — are the STEM workforce of tomorrow, who will work to solve some of our biggest challenges at home while answering some of our biggest questions about our universe,” said Padi Boyd, director of MOSAICS at NASA Headquarters in Washington. “Exposing today’s students to the incredibly inspiring and cutting-edge discoveries made through NASA’s space science people and resources ensures that these students get the training they need to persist in STEM careers, while fostering enduring collaborations between NASA researchers and faculty at a wide range of institutions.”
      NASA’s Science Mission Directorate MOSAICS program funds research projects building relationships between college faculty and researchers at the agency while providing mentorship and training for students in STEM disciplines. The projects support teams at academic institutions that historically have not been part of the agency’s research enterprise — including Hispanic-serving institutions, historically Black colleges and universities, Asian American and Native American Pacific Islander-serving institutions, and primarily undergraduate institutions.
      The program previously awarded seed funding to 11 teams in February and 13 teams in April. This third cohort brings the total number of projects funded to 44 teams at 36 academic institutions in 21 U.S. states and territories, including Washington and Puerto Rico, in collaboration with seven NASA centers. A new opportunity to apply for seed funding is now open until March 28, 2025.
      The following projects were selected as the third cohort to receive seed funding:
      “Bridging Fundamental Ice Chemistry Studies and Ocean World Explorations”
      Principal investigator: Chris Arumainayagam, Wellesley College, Massachusetts
      NASA center: NASA’s Jet Propulsion Laboratory (JPL), Southern California
      “Planetary Analog Field Science Experiences for Undergraduates: Advancing Fundamental Research and Testing Field Instrument Operations”
      Principal investigator: Alice Baldridge, Saint Mary’s College of California
      NASA center: NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      “Building an FSU-JPL Partnership to Advance Science Productivity Through Applications of Deep Learning”
      Principal investigator: Sambit Bhattacharya, Fayetteville State University, North Carolina
      NASA center: NASA JPL
      “CSTAT: Establishing Center for Safe and Trustworthy Autonomous Technologies”
      Principal investigator: Moitrayee Chatterjee, New Jersey City University
      NASA center: NASA Goddard
      “Development of Biomechanics Simulation Tool for Muscle Mechanics in Reduced Gravity to Enhance Astronaut Mission Readiness”
      Principal investigator: Ji Chen, University of the District of Columbia
      NASA center: NASA’s Johnson Space Center, Houston
      “NASA Next Level”
      Principal investigator: Teresa Ciardi, Santa Clarita Community College District, California
      NASA center: NASA JPL
      “Controlled Assembly of Amphiphilic Janus Particles in Polymer Matrix for Novel 3D Printing Applications in Space”
      Principal investigator: Ubaldo Cordova-Figueroa, Recinto Universitario Mayaguez
      NASA center: NASA’s Glenn Research Center, Cleveland
      “Development of a Non-Invasive Sweat Biosensor for Traumatic Brain Injury Compatible With In-Space Manufacturing to Monitor the Health of Astronauts”
      Principal investigator: Lisandro Cunci, University of Puerto Rico, Rio Pedras
      NASA center: NASA’s Ames Research Center, Silicon Valley, California
      “Examining Climate Impacts of Cirrus Clouds Through Past, Present, and Future NASA Airborne Campaigns”
      Principal investigator: Minghui Diao, San Jose State University Research Foundation, California
      NASA center: NASA Ames
      “CSUN-JPL Collaboration to Study Ocean Fronts Using Big Data and Open Science Structures in Coastal North America”
      Principal investigator: Mario Giraldo, California State University, Northridge
      NASA center: NASA JPL
      “Accelerating Electric Propulsion Development for Planetary Science Missions With Optical Plasma Diagnostics”
      Principal investigator: Nathaniel Hicks, University of Alaska, Anchorage
      NASA center: NASA JPL
      “Advancing Students Through Research Opportunities in Los Angeles (ASTRO-LA)”
      Principal investigator: Margaret Lazzarini, California State University, Los Angeles
      NASA center: NASA JPL
      “Bridging Toward a More Inclusive Learning Environment Through Gamma-ray Burst Studies With Machine Learning and Citizen Science”
      Principal investigator: Amy Lien, University of Tampa, Florida
      NASA center: NASA Goddard
      “Hampton University STEM Experience With NASA Langley Research Center: Polarimetry for Aerosol Characterization”
      Principal investigator: Robert Loughman, Hampton University, Virginia
      NASA center: NASA’s Langley Research Center, Hampton, Virginia
      “Aerocapture Analysis and Development for Uranus and Neptune Planetary Missions”
      Principal investigator: Ping Lu, San Diego State University
      NASA center: NASA Langley
      “Pathways from Undergraduate Research to the Habitable Worlds Observatory”
      Principal investigator: Ben Ovryn, New York Institute of Technology
      NASA center: NASA Goddard
      “Point-Diffraction Interferometer for Digital Holography”
      Principal investigator: James Scire, New York Institute of Technology
      NASA center: NASA Goddard
      “From Sunbeams to Career Dreams: Illuminating Pathways for NMSU Students in Solar-Terrestrial Physics in Partnership With NASA GSFC”
      Principal investigator: Juie Shetye, New Mexico State University
      NASA center: NASA Goddard
      “CONNECT-SBG: Collaborative Nexus for Networking, Education, and Career Training in Surface Biology and Geology”
      Principal investigator: Gabriela Shirkey, Chapman University, California
      NASA center: NASA JPL
      “Multiplexed Phytohormone and Nitrate Sensors for Real-Time Analysis of Plant Responses to Pathogenic Stress in Spaceflight-Like Conditions”
      Principal investigator: Shawana Tabassum, University of Texas, Tyler
      NASA center: NASA’s Kennedy Space Center, Florida
      Learn more about the MOSAICS program at:
      https://science.nasa.gov/researchers/smd-bridge-program
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Aug 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      MOSAICS Science Mission Directorate View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This panorama shows the area NASA’s Perseverance Mars rover will climb in coming months to crest Jezero Crater’s rim. It is made up of 59 images taken by the rover’s Mastcam-Z on Aug. 4.NASA/JPL-Caltech/ASU/MSSS After 2½ years exploring Jezero Crater’s floor and river delta, the rover will ascend to an area where it will search for more discoveries that could rewrite Mars’ history.
      NASA’s Perseverance Mars rover will soon begin a monthslong ascent up the western rim of Jezero Crater that is likely to include some of the steepest and most challenging terrain the rover has encountered to date. Scheduled to start the week of Aug. 19, the climb will mark the kickoff of the mission’s new science campaign — its fifth since the rover landed in the crater on Feb. 18, 2021.
      “Perseverance has completed four science campaigns, collected 22 rock cores, and traveled over 18 unpaved miles,” said Perseverance project manager Art Thompson of NASA’s Jet Propulsion Laboratory in Southern California. “As we start the Crater Rim Campaign, our rover is in excellent condition, and the team is raring to see what’s on the roof of this place.”
      Two of the priority regions the science team wants to study at the top of the crater are nicknamed “Pico Turquino” and “Witch Hazel Hill.” Imagery from NASA’s Mars orbiters indicates that Pico Turquino contains ancient fractures that may have been caused by hydrothermal activity in the distant past.
      One of the navigation cameras aboard NASA’s Perseverance Mars rover captured this view looking back at the “Bright Angel” area on July 30, the 1,224th Martian day, or sol, of the mission. NASA/JPL-Caltech Orbital views of Witch Hazel show layered materials that likely date from a time when Mars had a very different climate than today. Those views have revealed light-toned bedrock similar to what was found at “Bright Angel,” the area where Perseverance recently discovered and sampled the “Cheyava Falls” rock, which exhibits chemical signatures and structures that could possibly have been formed by life billions of years ago when the area contained running water.
      It’s Sedimentary
      During the river delta exploration phase of the mission, the rover collected the only sedimentary rock ever sampled from a planet other than Earth. Sedimentary rocks are important because they form when particles of various sizes are transported by water and deposited into a standing body of water; on Earth, liquid water is one of the most important requirements for life as we know it.  
      A study published Wednesday, Aug. 14, in AGU Advances chronicles the 10 rock cores gathered from sedimentary rocks in an ancient Martian delta, a fan-shaped collection of rocks and sediment that formed billions of years ago at the convergence of a river and a crater lake.
      The core samples collected at the fan front are the oldest, whereas the rocks cored at the fan top are likely the youngest, produced when flowing water deposited sediment in the western fan.
      “Among these rock cores are likely the oldest materials sampled from any known environment that was potentially habitable,” said Tanja Bosak, a geobiologist at the Massachusetts Institute of Technology in Cambridge and member of Perseverance’s science team. “When we bring them back to Earth, they can tell us so much about when, why, and for how long Mars contained liquid water and whether some organic, prebiotic, and potentially even biological evolution may have taken place on that planet.”
      This map shows the route NASA’s Perseverance Mars rover will take (in blue) as it climbs the western rim of Jezero Crater, first reaching “Dox Castle,” then investigating the “Pico Turquino” area before approaching “Witch Hazel Hill.” NASA/JPL-Caltech/University of Arizona Onward to the Crater Rim
      As scientifically intriguing as the samples have been so far, the mission expects many more discoveries to come.
      “Our samples are already an incredibly scientifically compelling collection, but the crater rim promises to provide even more samples that will have significant implications for our understanding of Martian geologic history,” said Eleni Ravanis, a University of Hawaiì at Mānoa scientist on Perseverance’s Mastcam-Z instrument team and one of the Crater Rim Campaign science leads. “This is because we expect to investigate rocks from the most ancient crust of Mars. These rocks formed from a wealth of different processes, and some represent potentially habitable ancient environments that have never been examined up close before.”
      Reaching the top of the crater won’t be easy. To get there, Perseverance will rely on its auto-navigation capabilities as it follows a route that rover planners designed to minimize hazards while still giving the science team plenty to investigate. Encountering slopes of up to 23 degrees on the journey (rover drivers avoid terrain that would tilt Perseverance more than 30 degrees), the rover will have gained about 1,000 feet (300 meters) in elevation by the time it summits the crater’s rim at a location the science team has dubbed “Aurora Park.”
      Then, perched hundreds of meters above a crater floor stretching 28 miles (45 kilometers) across, Perseverance can begin the next leg of its adventure.
      More Mission Information
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Alise Fisher / Erin Morton
      NASA Headquarters, Washington
      202-358-1600
      alise.m.fisher@nasa.gov / erin.morton@nasa.gov
      2024-107
      Share
      Details
      Last Updated Aug 14, 2024 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Mars 2020 Mars Sample Return (MSR) The Solar System Explore More
      5 min read NASA Demonstrates ‘Ultra-Cool’ Quantum Sensor for First Time in Space
      Article 24 hours ago 20 min read The Next Full Moon is a Supermoon Blue Moon
      The Next Full Moon is a Supermoon, a Blue Moon; the Sturgeon Moon; the Red,…
      Article 2 days ago 2 min read NASA Explores Industry, Partner Interest in Using VIPER Moon Rover
      As part of its commitment to a robust, sustainable lunar exploration program for the benefit…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...