Members Can Post Anonymously On This Site
Test
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
Contrary to the popular saying, work conducted by the propulsion test team at NASA’s Stennis Space Center is rocket science – and requires all the talent, knowledge, and expertise the term implies.
Rocket science at NASA Stennis, located near Bay St. Louis, Mississippi, has helped safely power American space dreams for almost 60 years ago. The accumulated knowledge and skills of the site’s test team continue to benefit NASA and commercial aerospace companies, thanks to new generations of skilled engineers and operators.
“The innovative, can-do attitude started with the founding of the south Mississippi site more than six decades ago,” said NASA Stennis Director John Bailey. “The knowledge, skills, and insight of a versatile team continue supporting NASA’s mission and goals of commercial aerospace companies by routinely conducting successful propulsion testing at NASA Stennis.”
Test team personnel perform facility data review following completion of a liquid oxygen cold-flow activation activity on the E-1 Test Stand at NASA’s Stennis Space Center on March 23, 2016. Activation of the test cell was in preparation for testing L3Harris’ (then known as Aerojet Rocketdyne) AR1 rocket engine pre-burner and main injector. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial projects. NASA/Stennis Operators at NASA’s High Pressure Gas Facility conduct a critical stress test Oct. 18-19, 2018, to demonstrate the facility’s readiness to support testing of the core stage of NASA’s powerful SLS (Space Launch System) rocket. The High Pressure Gas Facility was critical in producing and delivering gases needed for SLS core stage testing ahead of the successful launch of Artemis I. NASA/Stennis Test control center crews at NASA’s Stennis Space Center’s simulate full operations of core stage testing Dec. 13, 2019, for NASA’s powerful SLS (Space Launch System) rocket on the Thad Cochran Test Stand (B-2). NASA Stennis conducted SLS core stage testing in 2020-21 ahead of the successful Artemis I mission. NASA/Stennis A sitewide stress test at NASA’s Stennis Space Center on Dec. 13, 2019, simulates full operations needed during SLS (Space Launch System) core stage testing. The 24-hour exercise involved crews across NASA Stennis, including at the High Pressure Water Facility that provided needed generator power and water flow to the Thad Cochran Test Stand (B-2) during testing.NASA/Stennis The NASA Stennis team exhibits a depth and breadth of experience and expertise likely unsurpassed anywhere in the world.
The depth is built on decades of propulsion test experience. Veteran team members of today learned from those working during the Apollo era, who overcame various engineering, technical, communications, and mechanical difficulties in testing the Saturn V rocket stages that powered humans to the Moon. During 43 stage firings, the team accumulated an estimated 2,475 years of rocket engine test expertise.
Members of the Apollo test team then joined with new engineers and operators to test main engines that powered 30 years of space shuttle missions. From 1975 to 2009, the team supported main engine development, certification, acceptance, and anomaly testing with over 2,300 hot fires and more than 820,000 seconds of accumulated hot-fire time.
“NASA Stennis is unique because of the proven test operations expertise passed from generation to generation,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “It is expertise you can trust to deliver what is needed.”
A member of the Fred Haise Test Stand (formerly the A-1 Test Stand) operations team examines the progress of a cold-shock test on May 1, 2014. The test marked a milestone in preparing the stand to test RS-25 rocket engines that will help power NASA’s SLS (Space Launch System) rocket.NASA/Stennis In addition to depth, the site team also has a breadth of experience that gives it unparalleled versatility and adaptability.
Part of that comes from the nature of the center itself. NASA Stennis is the second largest NASA center in terms of geography, but the civil servant workforce is small. As a result, test team members work on a range of propulsion projects, from testing components on smaller E Test Complex cells to firing large engines and even rocket stages on the heritage Apollo-era stands.
“Our management have put us in a position to be successful,” said NASA engineer Josh Greiner. “They have helped move us onto the test stands and given us a huge share of the responsibility of leading projects early in our career, which provides us the confidence and opportunity to conduct tests.”
In addition, center leaders made a deliberate decision more than a decade ago to return test stand operations to the NASA team. Prior to that time, stand operations were in the hands of contractors under NASA supervision. The shift allowed the civil servant test team to fine-tune its skill set even as it continued to work closely with contractor partners to support both government and commercial aerospace propulsion projects.
An image from October 2022 shows NASA engineers preparing for the next RS-25 engine test series at NASA’s Stennis Space Center by monitoring the reload of propellant tanks to the Fred Haise Test Stand (formerly the A-1 Test Stand). RS-25 engines are powered by a mix of liquid hydrogen and liquid oxygen.NASA/Stennis An image from October 2022 shows test team personnel ensuring pressures and flow paths are set properly for liquid oxygen to be transferred to the Fred Haise Test Stand (formerly the A-1 Test Stand), pictured in the background.NASA/Stennis An image from August 2023 shows test team personnel inspecting a pump during an initial chill down activity at the E-3 Test Complex. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial programs and projects. NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing that will take place on the B-2 side of the Thad Cochran Test Stand. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. It will fly on the Artemis missions following a series of Green Run tests of its integrated systems at NASA Stennis. The test series will culminate with a hot fire of the four RL10 engines that will power the upper stage.NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing by conducting a liquid hydrogen flow procedure. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. The upper stage will undergo a series of Green Run tests of its integrated systems on the B-2 side of the Thad Cochran Test Stand at NASA Stennis.NASA/Stennis The evolution and performance of the NASA Stennis team was illustrated in stark fashion in June/July 2018 when a blended team of NASA, Defense Advanced Research Projects Agency, Aerojet Rocketdyne, Boeing, and Syncom Space Services engineers and operators test fired an AR-22 rocket engine 10 times in a 240-hour period.
The campaign marked the first time a large liquid oxygen/liquid hydrogen engine had been tested so often in such a short period of time. The test team overcame a variety of challenges, including a pair of lightning strikes that threatened to derail the entire effort. Following completion of the historic series, a NASA engineer who helped lead the campaign recounted one industry observer who repeatedly characterized the site’s test team as nothing less than a national asset.
The experienced site workforce now tests RS-25 engines and propulsion systems for NASA’s Artemis campaign, including those that will help power Artemis missions to the Moon for scientific discovery and economic benefits. The NASA Stennis team also supports a range of commercial aerospace propulsion test activities, facilitating continued growth in capabilities. For instance, the team now has experience working with oxygen, hydrogen, methane, and kerosene propellants.
“The NASA and contractor workforce at NASA Stennis is second to none when it comes to propulsion testing,” Schuyler said. “Many of the current employees have been involved in rocket engine testing for over 30 years, and newer workers are being trained under these seasoned professionals.”
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
Article 14 mins ago Keep Exploring Discover Related Stennis Topics
Propulsion Test Engineering
NASA Stennis Front Door
Multi-User Test Complex
Doing Business with NASA Stennis
View the full article
-
By NASA
Astronaut and Artemis II pilot, Victor Glover, maneuvers the latch handle on an Orion test side hatch during performance evaluations at the Lockheed Martin Space campus in Littleton, Colorado.Photo credit: Lockheed Martin Artemis II NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, and CSA (Canadian Space Agency) astronaut Jeremy Hansen recently traveled to Lockheed Martin Space in Littleton, Colorado, where they practiced opening and closing an Orion crew module side hatch model to help demonstrate its reliability and durability during their 10-day mission around the Moon.
During normal mission operations, the crew will not operate the hatches – the ground systems team at NASA’s Kennedy Space Center in Florida will assist the crew into Orion at the launch pad, then close the hatch behind them prior to liftoff. After splashdown in the Pacific Ocean, recovery teams will open the side hatch and help crew to exit.
Back-up crew members Andre Douglas of NASA and Jenni Gibbons of CSA also trained on hatch operations, which help ensure the crew can safely enter and exit the spacecraft in the event of an emergency. The side hatch is normally opened using a manual gearbox system, but in an emergency, the hatch has release mechanisms containing small pyrotechnic (explosive) devices that release the latch pins on the hatch instantaneously, allowing the hatch to open quickly.
Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light.
This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.NASA/Chris Gunn The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor.
The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour.
“We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.”
The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass.
This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.NASA/Chris Gunn Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.
To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands).
If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior.
Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year.
In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory.
To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated Oct 08, 2024 EditorJamie AdkinsContactClaire Andreoli Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Technology Explore More
2 min read Tech Today: Spraying for Food Safety
Article 19 hours ago 5 min read NASA: New Insights into How Mars Became Uninhabitable
NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how…
Article 20 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape
This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into…
Article 4 days ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.