Jump to content

Recommended Posts

Posted
Investigative journalists Jeremy Corbell and George Knapp obtained and are revealing for the first time - footage of a military filmed UAP incursion within a United States joint operations base. This UAP of unknown origin displayed transmedium capability - and has been officially designated by the United States intelligence agencies as a UAP (Unidentified Aerial Phenomena). 

ebani%20yellofish%20UAO%20termal%20camera.png

Event description: An incursion by an object of unknown origin was filmed using Thermographic / Forward Looking Infrared (FLIR) for a durational period at a United States joint operations base in Iraq on October 2018 (night). 

The object moved through a sensitive military installation - and eventually traversed over a body of water, where it actuated a controlled descent - submerging into the water. 

After an observational period of about seventeen minutes - the UAP reemerged from the body of water and shot-off at an extreme rate of speed - beyond the optical scope of the observation platform. 

The UAP displayed transmedium capability:
The UAP was filmed entering the water with a controlled descent. The UAP emerged from the water about seventeen minutes later and orientated into a sudden and rapid directional flight - beyond the optical range of the platform monitoring it. 

The UAP displayed low observability:
The UAP was not visible with Night Vision (IR) and appeared to jam the targeting capability of the optical platform. 

The UAP displayed:
Positive lift - without the normally associated aerodynamic means for lift and thrust. The signatures typically associated with the propulsion maneuvers observed - were absent. 

Note: Could it be an Ebani?
Limited information exists regarding these UAP types. Could the unidentified object possibly be an Ebani? An Ebani is an organic (biological) entity that resides in our atmosphere. It seemly remains invisible to the naked eye, which could account for its detection solely on thermal cameras. The fact that the entity not only flies through the air but also submerges underwater for approximately 17 minutes before resurfacing and swiftly soaring away, indicating intelligent and deliberate movement.

Video 1: The Jellyfish UFO
video 2: On Twitter (X)  Jeremy Corbell discusses the strange sighting.

    

The Jellyfish UFO Videos 🪼

Recorded in 2018 over Iraq. Allegedly this thing went into the water, stayed underwater for 17 minutes then came out of the water and shot off at a 45 degree angle.

TMZ Presents: UFO Revolution
Episode 1:https://t.co/b8to4g3Hj3#ufoX #ufos #uappic.twitter.com/8fPBltULUN

— Mike Colangelo (@MikeColangelo) January 9, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      A security camera recently captured an eerie scene that has left people intrigued and spooked. In the footage, recorded at dawn, a mysterious figure dressed in white appears near a large vehicle. What makes the video even stranger is the reaction of two nearby dogs, who seem unusually distressed and unsettled by the presence. 

      While the exact location in Mexico where this happened hasn’t been confirmed, many are already speculating about the figure’s identity. Some believe it could be La Llorona, the legendary weeping woman from Mexican folklore. La Llorona is said to wander in sorrow, mourning her lost children, and has been the focus of countless ghost stories over the years. 
      Others have suggested a different explanation, claiming the figure resembles a "nightcrawler," a strange cryptid reportedly known for its bizarre appearance. 
      Skeptics, however, argue that it might just be a person caught in an unusual moment, and the dogs’ reactions could be explained by their heightened senses picking up on something out of the ordinary. Still, the dogs' unsettling behavior has sparked debate about whether the encounter might have been something paranormal. 
      For now, the true nature of the figure remains a mystery. View the full article
    • By Space Force
      The Air Force Research Laboratory, or AFRL, launched the Space Power InfraRed Regulation and Analysis of Lifetime, or SPIRRAL, experiment, Nov. 4. SPIRRAL, flown by AFRL through the DOD Space Test Program, will characterize the performance of Variable Emissivity Materials, or VEMs, an approach toward solving thermal challenges for space vehicles while on-orbit.
      View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
    • By European Space Agency
      Image: Spooky Earths seen by Hera’s HyperScout View the full article
  • Check out these Videos

×
×
  • Create New...