Jump to content

10 Years Ago: The First Operational Cygnus Cargo Mission to the Space Station


NASA

Recommended Posts

  • Publishers

To replace the cargo and crew transportation services to and from the International Space Station following the retirement of the space shuttle in 2011, the United States developed a novel approach to procure those services from American commercial entities. On Jan. 9, 2014, Orbital Sciences Corporation, one of two companies selected initially to provide cargo transportation services, launched the first operational mission of its Cygnus spacecraft. During its one-month stay at the space station, the onboard Expedition 38 crew unloaded its cargo and then filled it with trash and unneeded equipment before releasing it for a destructive reentry. The novel approach of the government procuring services provided by private companies opened a new chapter in human space exploration.

Photo of the Timeline of the first phase of Commercial Orbital Transportation Services (COTS) activities.
Timeline of the first phase of Commercial Orbital Transportation Services (COTS) activities.

On Jan. 14, 2004, President George W. Bush announced the Vision for Space Exploration (VSE). In addition to proposing a return to the Moon, the VSE saw the retirement of the space shuttle after completing space station assembly. The VSE encouraged NASA to acquire commercial cargo services to the space station as soon as practical, and NASA Administrator Michael D. Griffin established the Commercial Crew and Cargo Program Office (C3PO) in November 2005. The program inaugurated a new business model for the space agency that instead of traditional procurement contracts with private enterprise to deliver hardware and services, NASA now relied on the companies investing their own capital to develop the needed spacecraft and rockets. The agency then purchased the transportation services from the companies. The C3PO devised a two-phase process to develop cargo resupply services to the space station – the Commercial Orbital Transportation System (COTS) program for commercial entities to develop and demonstrate reliable commercial services followed by the Commercial Resupply Services (CRS) program to actually deliver cargo to the space station. On Aug. 18, 2006, NASA announced that Space Exploration Corporation (SpaceX) of Hawthorne, California, and Oklahoma City, Oklahoma-based Rocketplane Kistler (RpK) had won the first round of the COTS competition and signed Space Act Agreements (SAAs) with the two companies. In October 2007, NASA terminated the agreement with RpK since the company hadn’t raised enough capital. Following a second round of competitions, NASA selected and signed a SAA with Orbital Sciences Corporation (Orbital) of Dulles, Virginia, on Feb. 19, 2008.

Workers integrate the Cygnus mass simulator with its Antares launch vehicle First launch of an Antares rocket in 2013, carrying a Cygnus mass simulator
Left: Workers integrate the Cygnus mass simulator with its Antares launch vehicle. Right: First launch of an Antares rocket in 2013, carrying a Cygnus mass simulator.

Italian aerospace company Thales Alenia Space built Orbital’s Cygnus cargo vehicle, relying on its experience building the European Space Agency’s Columbus research module and the Multi-Purpose Logistics Modules for the space station. Orbital developed the two-stage Antares rocket to launch the Cygnus spacecraft. On Dec. 23, 2008, NASA announced the award of the first CRS contracts to SpaceX for 12 space station resupply missions using its Dragon spacecraft and to Orbital for eight missions, in 2015 adding eight more Dragon and three more Cygnus flights. On Jan. 14, 2016, a second CRS-2 contract not only guaranteed at least six more SpaceX and Orbital missions but also added a third contractor, Sparks, Nevada-based Sierra Nevada Corporation to provide at least six flights of a cargo version of their Dream Chaser reusable space plane. Orbital launched the first test flight of its Antares rocket from the Mid-Atlantic Regional Spaceport on Wallops Island, Virginia, on April 21, 2013, with a test payload to simulate the mass of a Cygnus spacecraft. The mission’s objectives did not include approaching the space station and the mass simulator burned up on reentry on May 10.

Liftoff of the Antares rocket carrying the Cygnus Demo 1 mission Cygnus Demo spacecraft grappled by Canadarm2 prior to berthing on the space station Expedition 37 crew member Luca S. Parmitano of the European Space Agency inside the Cygnus spacecraft during its Demo mission to the space station
Left: Liftoff of the Antares rocket carrying the Cygnus Demo 1 mission. Middle: Cygnus Demo spacecraft grappled by Canadarm2 prior to berthing on the space station. Right: Expedition 37 crew member Luca S. Parmitano of the European Space Agency inside the Cygnus spacecraft during its Demo mission to the space station.

Orbital carried out a single demonstration mission, designated Cygnus Demo 1, launching on Sep. 18, 2013. The company began a tradition of naming their spacecraft after deceased astronauts or other aerospace notables, christening this first one the G. David Low after the former astronaut and Orbital employee who died in 2008. Orbital executive and Low’s fellow Class of 1984 astronaut Frank L. Culbertson said during a preflight press conference, “We were very proud to name [it] the G. David Low.” Eleven days after its launch, Expedition 37 crew member Luca S. Parmitano from the European Space Agency grappled the spacecraft with the Canadarm2 remote manipulator system and berthed it to the station’s Node 2 Harmony module’s nadir or Earth facing port. The crew unloaded the 1,543 pounds of supplies that it brought and on Oct. 22 unberthed it, loaded with 2,850 pounds of cargo for disposal. The next day, Cygnus fired its engine to begin the fiery reentry over the Pacific Ocean. The mission completed Orbital’s flight certification for its cargo vehicle.

Liftoff of the first operational Cygnus cargo resupply mission The space station’s Canadarm2 robotic arm about to capture the first operational Cygnus spacecraft named SS C. Gordon Fullerton The first Enhanced Cygnus arriving at the space station in 2015; compare against the smaller standard Cygnus
Left: Liftoff of the first operational Cygnus cargo resupply mission. Middle: The space station’s Canadarm2 robotic arm about to capture the first operational Cygnus spacecraft named SS C. Gordon Fullerton. Right: The first Enhanced Cygnus arriving at the space station in 2015; compare against the smaller standard Cygnus.

The mission patch for Orbital’s first operational cargo resupply mission to the space station
The mission patch for Orbital’s first operational cargo resupply mission to the space station.

The first operational Cygnus mission, designated Orb-1, got underway on Jan. 9, 2014. The spacecraft named after NASA astronaut C. Gordon Fullerton, who died the previous year, arrived at the space station three days later. Expedition 38 crew member NASA astronaut Michael S. Hopkins used Canadarm2 to grapple and berth it to the Harmony module. The onboard crew unloaded the 2,780 pounds of supplies that the spacecraft brought to the station and unberthed it on Feb. 18. It disposed of 3,240 pounds of trash and other unneeded cargo. To date, 19 Cygnus spacecraft have lofted more than 64 tons of logistics to the space station, with only one launch failure, the Orb-3 mission in October 2014. This launch failure and one with SpaceX in June 2015 highlighted the wisdom of the decision to use two separate and independent systems to launch cargo to the space station. Beginning in late 2015, Orbital introduced an Enhanced Cygnus with a 50% increase in internal volume to carry more cargo. In addition to upgrading its spacecraft and rocket, Orbital underwent some corporate restructuring over the years, first merging with Alliant Technologies in 2015 to form Orbital ATK. In 2018 Northrup Grumman acquired Orbital ATK to form Northrup Grumman Innovation Systems. Upgrades to the space station itself, such as opening up a second berthing port on the Unity module in 2015 allowed two cargo vehicles to be docked at the same time, with a third port available in 2019 for SpaceX crew and cargo vehicles to dock directly at the station without the need for astronauts to use Canadarm2 to grapple and berth them. Beginning in 2024, a fourth port will allow four cargo and crew vehicles to remain at the station simultaneously.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
      The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
      The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
      Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory. 
      How long is a typical stay aboard the International Space Station?
      A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission. 
      During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
      How does NASA keep astronauts healthy while in space?
      NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
      How does NASA support its astronauts’ mental and emotional well-being while in space?
      The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
      To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
      How does microgravity affect astronaut physical health?
      In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
      Why do astronauts exercise in space?
      Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
      What roles do food and nutrition play in supporting astronaut health?
      Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
      NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
      NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
      How do astronauts train to work together while in space?
      In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
      What happens if there is a medical emergency on the space station?
      All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
      Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
      www.nasa.gov/hhp
      View the full article
    • By NASA
      Pictured (clockwise) from bottom left are astronauts Charles O. Hobaugh, commander; Mike Foreman, Leland Melvin, Robert L. Satcher Jr. and Randy Bresnik, all mission specialists; along with Barry E. “Butch” Wilmore, pilot; and Nicole Stott, mission specialist.NASA The STS-129 crew members pose for a portrait following a joint news conference with the Expedition 21 crew members on Nov. 24, 2009. Astronauts Charles O. Hobaugh, Mike Foreman, Leland Melvin, Robert L. Satcher Jr., Randy Bresnik, Butch Wilmore, and Nicole Stott launched from NASA’s Kennedy Space Center in Florida on Nov. 16, 2009, aboard the space shuttle Atlantis. Traveling with them was nearly 30,000 pounds of replacement parts and equipment that would keep the orbital outpost supplied for several years to come.
      The Atlantis crew performed three demanding but successful spacewalks – and enjoyed a surprise Thanksgiving dinner on the station, courtesy of the Expedition 21 crew.
      Image credit: NASA
      View the full article
    • By NASA
      Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. The large cargo landers will have the capability to land approximately 26,000 to 33,000 pounds (12-15 metric tons) of large, heavy payload on the lunar surface. Credit: SpaceX/Blue Origin NASA, along with its industry and international partners, is preparing for sustained exploration of the lunar surface with the Artemis campaign to advance science and discovery for the benefit of all. As part of that effort, NASA intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver large pieces of equipment and infrastructure to the lunar surface.
      NASA expects to assign demonstration missions to current human landing system providers, SpaceX and Blue Origin, to mature designs of their large cargo landers following successful design certification reviews. The assignment of these missions builds on the 2023 request by NASA for the two companies to develop cargo versions of their crewed human landing systems, now in development for Artemis III, Artemis IV, and Artemis V.
      “NASA is planning for both crewed missions and future services missions to the Moon beyond Artemis V,” said Stephen D. Creech, assistant deputy associate administrator for technical, Moon to Mars Program Office. “The Artemis campaign is a collaborative effort with international and industry partners. Having two lunar lander providers with different approaches for crew and cargo landing capability provides mission flexibility while ensuring a regular cadence of Moon landings for continued discovery and scientific opportunity.”
      NASA plans for at least two delivery missions with large cargo. The agency intends for SpaceX’s Starship cargo lander to deliver a pressurized rover, currently in development by JAXA (Japan Aerospace Exploration Agency), to the lunar surface no earlier than fiscal year 2032 in support of Artemis VII and later missions. The agency expects Blue Origin to deliver a lunar surface habitat no earlier than fiscal year 2033.
      “Based on current design and development progress for both crew and cargo landers and the Artemis mission schedules for the crew lander versions, NASA assigned a pressurized rover mission for SpaceX and a lunar habitat delivery for Blue Origin,” said Lisa Watson-Morgan, program manager, Human Landing System, at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These large cargo lander demonstration missions aim to optimize our NASA and industry technical expertise, resources, and funding as we prepare for the future of deep space exploration.”
      SpaceX will continue cargo lander development and prepare for the Starship cargo mission under Option B of the NextSTEP Appendix H contract. Blue Origin will conduct its cargo lander work and demonstration mission under NextSTEP Appendix P. NASA expects to issue an initial request for proposals to both companies in early 2025.
      With the Artemis campaign, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with commercial human landing systems, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on NASA’s Human Landing System Program, visit:
      https://www.nasa.gov/hls
      -end-
      James Gannon
      Headquarters, Washington
      202-358-1600
      james.h.gannon@nasa.gov
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Nov 19, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Human Landing System Program Artemis Exploration Systems Development Mission Directorate Marshall Space Flight Center View the full article
  • Check out these Videos

×
×
  • Create New...