Jump to content

10 Years Ago: The First Operational Cygnus Cargo Mission to the Space Station


NASA

Recommended Posts

  • Publishers

To replace the cargo and crew transportation services to and from the International Space Station following the retirement of the space shuttle in 2011, the United States developed a novel approach to procure those services from American commercial entities. On Jan. 9, 2014, Orbital Sciences Corporation, one of two companies selected initially to provide cargo transportation services, launched the first operational mission of its Cygnus spacecraft. During its one-month stay at the space station, the onboard Expedition 38 crew unloaded its cargo and then filled it with trash and unneeded equipment before releasing it for a destructive reentry. The novel approach of the government procuring services provided by private companies opened a new chapter in human space exploration.

Photo of the Timeline of the first phase of Commercial Orbital Transportation Services (COTS) activities.
Timeline of the first phase of Commercial Orbital Transportation Services (COTS) activities.

On Jan. 14, 2004, President George W. Bush announced the Vision for Space Exploration (VSE). In addition to proposing a return to the Moon, the VSE saw the retirement of the space shuttle after completing space station assembly. The VSE encouraged NASA to acquire commercial cargo services to the space station as soon as practical, and NASA Administrator Michael D. Griffin established the Commercial Crew and Cargo Program Office (C3PO) in November 2005. The program inaugurated a new business model for the space agency that instead of traditional procurement contracts with private enterprise to deliver hardware and services, NASA now relied on the companies investing their own capital to develop the needed spacecraft and rockets. The agency then purchased the transportation services from the companies. The C3PO devised a two-phase process to develop cargo resupply services to the space station – the Commercial Orbital Transportation System (COTS) program for commercial entities to develop and demonstrate reliable commercial services followed by the Commercial Resupply Services (CRS) program to actually deliver cargo to the space station. On Aug. 18, 2006, NASA announced that Space Exploration Corporation (SpaceX) of Hawthorne, California, and Oklahoma City, Oklahoma-based Rocketplane Kistler (RpK) had won the first round of the COTS competition and signed Space Act Agreements (SAAs) with the two companies. In October 2007, NASA terminated the agreement with RpK since the company hadn’t raised enough capital. Following a second round of competitions, NASA selected and signed a SAA with Orbital Sciences Corporation (Orbital) of Dulles, Virginia, on Feb. 19, 2008.

Workers integrate the Cygnus mass simulator with its Antares launch vehicle First launch of an Antares rocket in 2013, carrying a Cygnus mass simulator
Left: Workers integrate the Cygnus mass simulator with its Antares launch vehicle. Right: First launch of an Antares rocket in 2013, carrying a Cygnus mass simulator.

Italian aerospace company Thales Alenia Space built Orbital’s Cygnus cargo vehicle, relying on its experience building the European Space Agency’s Columbus research module and the Multi-Purpose Logistics Modules for the space station. Orbital developed the two-stage Antares rocket to launch the Cygnus spacecraft. On Dec. 23, 2008, NASA announced the award of the first CRS contracts to SpaceX for 12 space station resupply missions using its Dragon spacecraft and to Orbital for eight missions, in 2015 adding eight more Dragon and three more Cygnus flights. On Jan. 14, 2016, a second CRS-2 contract not only guaranteed at least six more SpaceX and Orbital missions but also added a third contractor, Sparks, Nevada-based Sierra Nevada Corporation to provide at least six flights of a cargo version of their Dream Chaser reusable space plane. Orbital launched the first test flight of its Antares rocket from the Mid-Atlantic Regional Spaceport on Wallops Island, Virginia, on April 21, 2013, with a test payload to simulate the mass of a Cygnus spacecraft. The mission’s objectives did not include approaching the space station and the mass simulator burned up on reentry on May 10.

Liftoff of the Antares rocket carrying the Cygnus Demo 1 mission Cygnus Demo spacecraft grappled by Canadarm2 prior to berthing on the space station Expedition 37 crew member Luca S. Parmitano of the European Space Agency inside the Cygnus spacecraft during its Demo mission to the space station
Left: Liftoff of the Antares rocket carrying the Cygnus Demo 1 mission. Middle: Cygnus Demo spacecraft grappled by Canadarm2 prior to berthing on the space station. Right: Expedition 37 crew member Luca S. Parmitano of the European Space Agency inside the Cygnus spacecraft during its Demo mission to the space station.

Orbital carried out a single demonstration mission, designated Cygnus Demo 1, launching on Sep. 18, 2013. The company began a tradition of naming their spacecraft after deceased astronauts or other aerospace notables, christening this first one the G. David Low after the former astronaut and Orbital employee who died in 2008. Orbital executive and Low’s fellow Class of 1984 astronaut Frank L. Culbertson said during a preflight press conference, “We were very proud to name [it] the G. David Low.” Eleven days after its launch, Expedition 37 crew member Luca S. Parmitano from the European Space Agency grappled the spacecraft with the Canadarm2 remote manipulator system and berthed it to the station’s Node 2 Harmony module’s nadir or Earth facing port. The crew unloaded the 1,543 pounds of supplies that it brought and on Oct. 22 unberthed it, loaded with 2,850 pounds of cargo for disposal. The next day, Cygnus fired its engine to begin the fiery reentry over the Pacific Ocean. The mission completed Orbital’s flight certification for its cargo vehicle.

Liftoff of the first operational Cygnus cargo resupply mission The space station’s Canadarm2 robotic arm about to capture the first operational Cygnus spacecraft named SS C. Gordon Fullerton The first Enhanced Cygnus arriving at the space station in 2015; compare against the smaller standard Cygnus
Left: Liftoff of the first operational Cygnus cargo resupply mission. Middle: The space station’s Canadarm2 robotic arm about to capture the first operational Cygnus spacecraft named SS C. Gordon Fullerton. Right: The first Enhanced Cygnus arriving at the space station in 2015; compare against the smaller standard Cygnus.

The mission patch for Orbital’s first operational cargo resupply mission to the space station
The mission patch for Orbital’s first operational cargo resupply mission to the space station.

The first operational Cygnus mission, designated Orb-1, got underway on Jan. 9, 2014. The spacecraft named after NASA astronaut C. Gordon Fullerton, who died the previous year, arrived at the space station three days later. Expedition 38 crew member NASA astronaut Michael S. Hopkins used Canadarm2 to grapple and berth it to the Harmony module. The onboard crew unloaded the 2,780 pounds of supplies that the spacecraft brought to the station and unberthed it on Feb. 18. It disposed of 3,240 pounds of trash and other unneeded cargo. To date, 19 Cygnus spacecraft have lofted more than 64 tons of logistics to the space station, with only one launch failure, the Orb-3 mission in October 2014. This launch failure and one with SpaceX in June 2015 highlighted the wisdom of the decision to use two separate and independent systems to launch cargo to the space station. Beginning in late 2015, Orbital introduced an Enhanced Cygnus with a 50% increase in internal volume to carry more cargo. In addition to upgrading its spacecraft and rocket, Orbital underwent some corporate restructuring over the years, first merging with Alliant Technologies in 2015 to form Orbital ATK. In 2018 Northrup Grumman acquired Orbital ATK to form Northrup Grumman Innovation Systems. Upgrades to the space station itself, such as opening up a second berthing port on the Unity module in 2015 allowed two cargo vehicles to be docked at the same time, with a third port available in 2019 for SpaceX crew and cargo vehicles to dock directly at the station without the need for astronauts to use Canadarm2 to grapple and berth them. Beginning in 2024, a fourth port will allow four cargo and crew vehicles to remain at the station simultaneously.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      Artist’s rendering of NASA’s Europa Clipper spacecraft. Credit: NASA/JPL-Caltech NASA will hold a media teleconference at 4 p.m. EDT, Monday, Sept. 9, to provide an update on Europa Clipper, a mission that will study whether Jupiter’s moon Europa could be hospitable to life. The teleconference will occur after a key decision point meeting earlier that day regarding next steps for the mission.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants in the teleconference include:
      Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters Laurie Leshin, center director, NASA’s Jet Propulsion Laboratory Curt Niebur, Europa Clipper program scientist, NASA Headquarters Jordan Evans, Europa Clipper project manager, NASA’s Jet Propulsion Laboratory To ask questions during the teleconference, media must RSVP no later than two hours before the event to Molly Wasser at: molly.l.wasser@nasa.gov. NASA’s media accreditation policy is available online.
      Europa Clipper’s main science goal is to determine whether there are places below the surface of Jupiter’s icy moon that could support life. The mission’s objectives are to understand the nature of Europa’s ice shell and the ocean beneath it, as well as to study the moon’s composition and geology. A detailed exploration of Europa also will help astrobiologists better understand the potential for habitable worlds beyond our planet.
      To learn more about Europa Clipper, visit: 
      https://europa.nasa.gov
      -end- 
      Karen Fox / Molly Wasser
      Headquarters, Washington 
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      Europa Clipper Jupiter Science Mission Directorate View the full article
    • By European Space Agency
      Image: ESA’s Metal 3D Printer has produced the first metal part ever created in space. 
      The technology demonstrator, built by Airbus and its partners, was launched to the International Space Station at the start of this year, where ESA astronaut Andreas Mogensen installed the payload in the European Drawer Rack of ESA’s Columbus module. In August, the printer successfully printed the first 3D metal shape in space.  
      This product, along with three others planned during the rest of the experiment, will return to Earth for quality analysis: two of the samples will go to ESA’s technical heart in the Netherlands (ESTEC), another will go to ESA’s astronaut training centre in Cologne (EAC) for use in the LUNA facility, and the fourth will go to the Technical University of Denmark (DTU). 
      As exploration of the Moon and Mars will increase mission duration and distance from Earth, resupplying spacecraft will be more challenging.  Additive manufacturing in space will give autonomy for the mission and its crew, providing a solution to manufacture needed parts, to repair equipment or construct dedicated tools, on demand during the mission, rather than relying on resupplies and redundancies. 
      ESA’s technology demonstrator is the first to successfully print a metal component in microgravity conditions. In the past, the International Space Station has hosted plastic 3D printers.
      View the full article
    • By European Space Agency
      The two new Galileo satellites launched in April have entered service, completing the second of three constellation planes. With every addition to the constellation, the precision, availability and robustness of the Galileo signal is improved. The next launch is planned in the coming weeks and the remaining six Galileo First Generation satellites will join the constellation in the next years.
      View the full article
    • By NASA
      NASA and Boeing teams work around Boeing’s Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Boeing’s Orbital Flight Test-2.NASA/Bill Ingalls As NASA and Boeing prepare to return the company’s Starliner spacecraft uncrewed from the International Space Station to Earth, safety and mission success remain as top priorities for the teams. Mission managers will complete a series of operational and weather checks before the spacecraft undocks from the orbital complex. 
      The Starliner spacecraft is the first American capsule designed to touch down on land, supporting expedited astronaut and cargo recovery on future missions and to aid the company in spacecraft refurbishment. For Starliner missions, NASA and Boeing will use potential landing locations in the White Sands Missile Range, New Mexico; Willcox, Arizona; and Dugway Proving Ground, Utah. Edwards Air Force Base in California also is available as a contingency landing site. 
      Twenty-four hours before undocking, NASA analyzes weather predictions for the various landing sites. Winds at the selected landing site must be 6 mph (approximately 6 knots) or less when flying with crew, and approximately 13 mph (12 knots) or less when uncrewed. Ground temperatures must be warmer than 15 degrees Fahrenheit, and the cloud ceiling must be at least 1,000 feet. One nautical mile of visibility is required, and the area must be clear of precipitation, thunderstorms, and lightning within approximately a 22-mile (35-kilometer) radius. 
      When teams proceed with undocking, Starliner will complete a series of departure burns, allowing it to reach its landing site in as little as six hours. A final weather check also occurs before the spacecraft’s deorbit burn. Winds must be at or below 10 mph (9 knots). If winds exceed these limits, teams will waive the deorbit burn, and Starliner will target another landing attempt between 24 and 31 hours later. 
      Once clear to proceed, Starliner executes its deorbit burn, which lasts approximately 60 seconds, slowing it down enough to re-enter Earth’s atmosphere and committing the spacecraft to its targeted site. Immediately after the deorbit burn, Starliner repositions for service module disposal, which will burn up during re-entry over the southern Pacific Ocean. 
      Following service module separation, the command module maneuvers into re-entry position. During re-entry, the capsule experiences plasma buildup – reaching temperatures up to 3,000 degrees Fahrenheit – that may interrupt communications with the spacecraft for approximately four minutes. 
      NASA and Boeing teams work around Boeing’s Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Boeing’s Orbital Flight Test-2.NASA/Bill Ingalls Once Starliner re-enters Earth’s atmosphere, the forward heatshield – located on the top of the spacecraft – is jettisoned at 30,000 feet, exposing the two drogue and three main parachutes for deployment. The parachutes will continue to slow the spacecraft down as the base heatshield is jettisoned at 3,000 feet, allowing the six landing bags to inflate. At touchdown, the spacecraft is traveling at approximately 4 mph.  
      NASA and Boeing teams prepare for the landing of Boeing’s Starliner spacecraft at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Orbital Flight Test-2.NASA/Bill Ingalls The NASA and Boeing landing and recovery team is stationed at a holding zone near Starliner’s intended landing site. After landing, a series of five teams move in toward the spacecraft in a sequential order. 
      The first team to approach the spacecraft is the gold team, using equipment that “sniffs” the capsule for any hypergolic fuels that didn’t fully burn off before re-entry. They also cover the spacecraft’s thrusters. Once given the all-clear, the silver team moves in. This team electrically grounds and stabilizes Starliner before the green team approaches, supplying power and cooling to the crew module since the spacecraft is powered down. 
      Hazmat teams work around Boeing’s Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Orbital Flight Test-2. NASA/Bill Ingalls The blue team follows, documenting the recovery for public dissemination and future process review. The red team, which includes Boeing fire rescue, emergency medical technicians, and human factors engineers, then proceed to Starliner, opening the hatch.
      Cargo from the International Space Station is pictured inside Boeing’s Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Orbital Flight Test-2.NASA/Bill Ingalls The landing and recovery team begins unloading time-critical cargo from Starliner. The spacecraft is then transferred to Boeing facilities at NASA’s Kennedy Space Center in Florida for refurbishment ahead of its next flight. 
      NASA’s Commercial Crew Program is working with the American aerospace industry through a public-private partnership to launch astronauts on American rockets and spacecraft from American soil. The program’s goal is to provide safe, reliable, and cost-effective transportation on space station missions, which will allow for additional research time. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars. 
      For more information about the agency’s Commercial Crew Program, visit: 
      https://www.nasa.gov/commercialcrew
      View the full article
  • Check out these Videos

×
×
  • Create New...