Jump to content

10 Years Ago: The First Operational Cygnus Cargo Mission to the Space Station


Recommended Posts

  • Publishers
Posted

To replace the cargo and crew transportation services to and from the International Space Station following the retirement of the space shuttle in 2011, the United States developed a novel approach to procure those services from American commercial entities. On Jan. 9, 2014, Orbital Sciences Corporation, one of two companies selected initially to provide cargo transportation services, launched the first operational mission of its Cygnus spacecraft. During its one-month stay at the space station, the onboard Expedition 38 crew unloaded its cargo and then filled it with trash and unneeded equipment before releasing it for a destructive reentry. The novel approach of the government procuring services provided by private companies opened a new chapter in human space exploration.

Photo of the Timeline of the first phase of Commercial Orbital Transportation Services (COTS) activities.
Timeline of the first phase of Commercial Orbital Transportation Services (COTS) activities.

On Jan. 14, 2004, President George W. Bush announced the Vision for Space Exploration (VSE). In addition to proposing a return to the Moon, the VSE saw the retirement of the space shuttle after completing space station assembly. The VSE encouraged NASA to acquire commercial cargo services to the space station as soon as practical, and NASA Administrator Michael D. Griffin established the Commercial Crew and Cargo Program Office (C3PO) in November 2005. The program inaugurated a new business model for the space agency that instead of traditional procurement contracts with private enterprise to deliver hardware and services, NASA now relied on the companies investing their own capital to develop the needed spacecraft and rockets. The agency then purchased the transportation services from the companies. The C3PO devised a two-phase process to develop cargo resupply services to the space station – the Commercial Orbital Transportation System (COTS) program for commercial entities to develop and demonstrate reliable commercial services followed by the Commercial Resupply Services (CRS) program to actually deliver cargo to the space station. On Aug. 18, 2006, NASA announced that Space Exploration Corporation (SpaceX) of Hawthorne, California, and Oklahoma City, Oklahoma-based Rocketplane Kistler (RpK) had won the first round of the COTS competition and signed Space Act Agreements (SAAs) with the two companies. In October 2007, NASA terminated the agreement with RpK since the company hadn’t raised enough capital. Following a second round of competitions, NASA selected and signed a SAA with Orbital Sciences Corporation (Orbital) of Dulles, Virginia, on Feb. 19, 2008.

Workers integrate the Cygnus mass simulator with its Antares launch vehicle First launch of an Antares rocket in 2013, carrying a Cygnus mass simulator
Left: Workers integrate the Cygnus mass simulator with its Antares launch vehicle. Right: First launch of an Antares rocket in 2013, carrying a Cygnus mass simulator.

Italian aerospace company Thales Alenia Space built Orbital’s Cygnus cargo vehicle, relying on its experience building the European Space Agency’s Columbus research module and the Multi-Purpose Logistics Modules for the space station. Orbital developed the two-stage Antares rocket to launch the Cygnus spacecraft. On Dec. 23, 2008, NASA announced the award of the first CRS contracts to SpaceX for 12 space station resupply missions using its Dragon spacecraft and to Orbital for eight missions, in 2015 adding eight more Dragon and three more Cygnus flights. On Jan. 14, 2016, a second CRS-2 contract not only guaranteed at least six more SpaceX and Orbital missions but also added a third contractor, Sparks, Nevada-based Sierra Nevada Corporation to provide at least six flights of a cargo version of their Dream Chaser reusable space plane. Orbital launched the first test flight of its Antares rocket from the Mid-Atlantic Regional Spaceport on Wallops Island, Virginia, on April 21, 2013, with a test payload to simulate the mass of a Cygnus spacecraft. The mission’s objectives did not include approaching the space station and the mass simulator burned up on reentry on May 10.

Liftoff of the Antares rocket carrying the Cygnus Demo 1 mission Cygnus Demo spacecraft grappled by Canadarm2 prior to berthing on the space station Expedition 37 crew member Luca S. Parmitano of the European Space Agency inside the Cygnus spacecraft during its Demo mission to the space station
Left: Liftoff of the Antares rocket carrying the Cygnus Demo 1 mission. Middle: Cygnus Demo spacecraft grappled by Canadarm2 prior to berthing on the space station. Right: Expedition 37 crew member Luca S. Parmitano of the European Space Agency inside the Cygnus spacecraft during its Demo mission to the space station.

Orbital carried out a single demonstration mission, designated Cygnus Demo 1, launching on Sep. 18, 2013. The company began a tradition of naming their spacecraft after deceased astronauts or other aerospace notables, christening this first one the G. David Low after the former astronaut and Orbital employee who died in 2008. Orbital executive and Low’s fellow Class of 1984 astronaut Frank L. Culbertson said during a preflight press conference, “We were very proud to name [it] the G. David Low.” Eleven days after its launch, Expedition 37 crew member Luca S. Parmitano from the European Space Agency grappled the spacecraft with the Canadarm2 remote manipulator system and berthed it to the station’s Node 2 Harmony module’s nadir or Earth facing port. The crew unloaded the 1,543 pounds of supplies that it brought and on Oct. 22 unberthed it, loaded with 2,850 pounds of cargo for disposal. The next day, Cygnus fired its engine to begin the fiery reentry over the Pacific Ocean. The mission completed Orbital’s flight certification for its cargo vehicle.

Liftoff of the first operational Cygnus cargo resupply mission The space station’s Canadarm2 robotic arm about to capture the first operational Cygnus spacecraft named SS C. Gordon Fullerton The first Enhanced Cygnus arriving at the space station in 2015; compare against the smaller standard Cygnus
Left: Liftoff of the first operational Cygnus cargo resupply mission. Middle: The space station’s Canadarm2 robotic arm about to capture the first operational Cygnus spacecraft named SS C. Gordon Fullerton. Right: The first Enhanced Cygnus arriving at the space station in 2015; compare against the smaller standard Cygnus.

The mission patch for Orbital’s first operational cargo resupply mission to the space station
The mission patch for Orbital’s first operational cargo resupply mission to the space station.

The first operational Cygnus mission, designated Orb-1, got underway on Jan. 9, 2014. The spacecraft named after NASA astronaut C. Gordon Fullerton, who died the previous year, arrived at the space station three days later. Expedition 38 crew member NASA astronaut Michael S. Hopkins used Canadarm2 to grapple and berth it to the Harmony module. The onboard crew unloaded the 2,780 pounds of supplies that the spacecraft brought to the station and unberthed it on Feb. 18. It disposed of 3,240 pounds of trash and other unneeded cargo. To date, 19 Cygnus spacecraft have lofted more than 64 tons of logistics to the space station, with only one launch failure, the Orb-3 mission in October 2014. This launch failure and one with SpaceX in June 2015 highlighted the wisdom of the decision to use two separate and independent systems to launch cargo to the space station. Beginning in late 2015, Orbital introduced an Enhanced Cygnus with a 50% increase in internal volume to carry more cargo. In addition to upgrading its spacecraft and rocket, Orbital underwent some corporate restructuring over the years, first merging with Alliant Technologies in 2015 to form Orbital ATK. In 2018 Northrup Grumman acquired Orbital ATK to form Northrup Grumman Innovation Systems. Upgrades to the space station itself, such as opening up a second berthing port on the Unity module in 2015 allowed two cargo vehicles to be docked at the same time, with a third port available in 2019 for SpaceX crew and cargo vehicles to dock directly at the station without the need for astronauts to use Canadarm2 to grapple and berth them. Beginning in 2024, a fourth port will allow four cargo and crew vehicles to remain at the station simultaneously.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s C-130, now under new ownership, sits ready for its final departure from NASA’s Wallops Flight Facility in Virginia, on Friday, April 18, 2025. NASA/Garon Clark NASA’s C-130 Hercules, fondly known as the Herc, went wheels up at 9:45 a.m., Friday, April 18, as it departed from its decade-long home at NASA’s Wallops Flight Facility in Virginia, for the final time. The aircraft is embarking on a new adventure to serve and protect in the state of California where it is now under the ownership of the California Department of Forestry and Fire Protection (CAL FIRE). 
      The transition of the C-130 to CAL FIRE is part of a long-running, NASA-wide aircraft enterprise-management activity to consolidate the aircraft fleet and achieve greater operational efficiencies while reducing the agency’s infrastructure footprint. 
      The C-130 Hercules takes off for the final time from NASA’s Wallops Flight Facility in Virginia.NASA/Garon Clark “Our C-130 and the team behind it has served with great distinction over the past decade,” said David L. Pierce, Wallops Flight Facility director. “While our time with this amazing airframe has come to a close, I’m happy to see it continue serving the nation in this new capacity with CAL FIRE.”  
      The research and cargo aircraft, built in 1986, was acquired by NASA in 2015. Over the past decade, the C-130 supported the agency’s airborne scientific research, provided logistics support and movement of agency cargo, and supported technology demonstration missions. The aircraft logged approximately 1,820 flight hours in support of missions across the world during its time with the agency. 
      Additional aircraft housed at NASA Wallops will be relocated to NASA’s Langley Research Center in Hampton, Virginia, in the coming months. 
      For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops. 
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Apr 18, 2025 EditorOlivia F. LittletonLocationWallops Flight Facility Related Terms
      Wallops Flight Facility Explore More
      4 min read NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
      UPDATE March 31, 2025: The third and final rocket of the AWESOME mission launched on Saturday,…
      Article 4 weeks ago 5 min read NASA Super Pressure Balloons Return to New Zealand for Test Flights
      Article 1 month ago 2 min read NASA Wallops Breaks Ground on New Causeway Bridge
      Article 4 days ago View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By NASA
      Credit: NASA NASA is marking progress in strengthening the agency’s small business partnerships, supply chain resiliency, and domestic space manufacturing capabilities.
      Under the agency’s enhanced Mentor-Protégé Program, NASA has announced the first Mentor-Protégé Agreement between L3Harris Technologies, a NASA large prime contractor, and Parametric Machining, Inc., a veteran-owned small business.
      This agreement will help advance NASA’s mission by fostering innovation and reinforcing the agency’s supply chain. As NASA continues to advance the Artemis campaign, deep space exploration, and aeronautics research, partnerships like this are essential in securing a resilient and efficient supplier base.
      “We are excited to facilitate the first agreement under the newly enhanced NASA Mentor-Protégé Program,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs. “This agreement, and the many that will follow, promote domestic ingenuity and manufacturing and provide opportunities for small businesses to grow and thrive within NASA’s industrial base.”
      Through Mentor-Protégé Agreements, large prime contractors serve as mentors, offering technical and business development assistance to small business protégés. This collaboration not only enhances protégés’ capabilities but also provides mentors with a stronger, more reliable subcontracting base, enabling them to fill their supply chain gaps. Additionally, protégés gain potential prime and subcontract opportunities, enhanced technical capabilities, technical training, and long-term business growth.
      Relaunched in November 2024, the merit-based NASA Mentor-Protégé Program is designed to bolster small business development while strengthening NASA’s supply chain and industry base. By focusing on a targeted set of North American Industry Classification System codes, including research and development and aerospace manufacturing, NASA ensures that participating small businesses are well-positioned to contribute to long-term mission objectives.
      The agreement between L3Harris Technologies and Parametric Machining, Inc. demonstrates the value of NASA’s revamped Mentor-Protégé Program. NASA is actively accepting new Mentor-Protégé Agreements and encourages large prime contractors and small businesses to explore the benefits of forming partnerships under the program. Participating in the Mentor-Protégé Program provides:
      Enhanced manufacturing capabilities and subcontracting opportunities. Mentorship from experienced NASA prime contractors. Opportunities to advance competitiveness in government contracts. Access to technical assistance and business development support. A pathway for small businesses to integrate into NASA’s supply chain. L3Harris Technologies is a prime contractor at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, supporting the Geostationary Extended Observations Imager Instrument Implementation contract. NASA Goddard also will serve as the administering center for this agreement.
      For more information on NASA’s Mentor-Protégé Program and how to participate, visit:
      https://www.nasa.gov/osbp/mentor-protege-program
      -end-
      Share
      Details
      Last Updated Apr 17, 2025 ContactTiernan P. Doyletiernan.doyle@nasa.govLocationNASA Headquarters Related Terms
      Office of Small Business Programs (OSBP) View the full article
    • By NASA
      NASA Astronaut Don Pettit Soyuz MS-26 Space Station Farewells and Hatch Closing
  • Check out these Videos

×
×
  • Create New...