Members Can Post Anonymously On This Site
NASA Ames Awards Task Order Modification for Wind Tunnel Upgrades
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA is bringing the world of planetary defense to the public with its new documentary, “Planetary Defenders.”
Dr. Shantanu Naidu, Asteroid Radar Researcher, from NASA’s Jet Propulsion Laboratory points toward the Goldstone Solar System Radar in Barstow, CA – the most powerful planetary radar on Earth.Credit: NASA What would humanity do if an asteroid were headed for Earth? The documentary takes viewers inside the real-life efforts of scientists and engineers working to detect, track, and mitigate potential asteroid threats. Featuring firsthand accounts from experts on the front lines, the film reveals the science, technology, and personal dedication behind planetary defense. The film also showcases the teamwork that drives this critical global effort.
Debuting on NASA+ Wednesday, April 16, NASA is inviting the public to participate in a special YouTube Premiere event at 4:30 p.m. EDT. During this interactive screening, viewers can watch the first public showing of the film together and ask questions to NASA planetary defense experts.
To engage audiences further, NASA is providing digital creators with a toolkit that includes resources, activities, and ways to join the mission of planetary defense.
Established in 2016, NASA’s Planetary Defense Coordination Office leads the agency’s mission to find, track, and understand asteroids and comets that could pose a risk to Earth.
Stay up to date on NASA’s planetary defense efforts: https://www.nasa.gov/planetarydefense
About the Author
Emily Furfaro
Share
Details
Last Updated Apr 09, 2025 Related Terms
General Planetary Defense Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Explore More
2 min read Welcome to the Mission Support Directorate
Article 19 hours ago 7 min read Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights
One year ago today, a total solar eclipse swept across the United States. The event…
Article 1 day ago 3 min read Meet Alex Olley: Air Force Veteran Powering the Space Station
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
7 min read
Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights
One year ago today, a total solar eclipse swept across the United States. The event was a cornerstone moment in the Heliophysics Big Year, a global celebration of the Sun’s influence on Earth and the entire solar system. From October 2023 to December 2024 — a period encompassing two solar eclipses across the U.S., two new NASA heliophysics missions, and one spacecraft’s history-making solar flyby — NASA celebrated the Sun’s widespread influence on our lives.
An infographic showing key numbers summarizing the activities and events of the Heliophysics Big Year, which spanned from Oct. 14, 2023 – Dec. 24, 2024. NASA/Miles Hatfield/Kristen Perrin Annular Solar Eclipse
An annular (or “ring of fire”) solar eclipse occurred Oct. 14, 2023, and kicked off the Helio Big Year with a bang. Millions of people across North America witnessed the Moon crossing in front of the Sun, creating this brilliant celestial event. NASA’s live broadcast had more than 11 million views across different platforms.
On Oct. 14, 2023, an annular solar eclipse crossed North, Central, and South America. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere were able to experience this “ring of fire” eclipse. NASA’s official broadcast and outreach teams were located in Kerrville, TX, and Albuquerque, NM, to capture the event and celebrate with the communities in the path of annularity.
Credit: NASA/Ryan Fitzgibbons Before the eclipse, NASA introduced the 2023 Eclipse Explorer, an interactive map to explore eclipse details for any location in the United States. NASA shared tips on eclipse safety, including through a video with NSYNC’s Lance Bass and even with an augmented reality filter.
Scientists also studied conditions during the annular eclipse with sounding rockets, balloons, and amateur radio.
Total Solar Eclipse
On April 8, 2024, millions of people across North America experienced a total solar eclipse that darkened parts of 15 U.S. states in the path of totality.
Ahead of the event, NASA hosted a widespread safety campaign, handed out over 2 million solar viewing glasses, and produced an interactive map to help viewers plan their viewing experience. On eclipse day, NASA also hosted a live broadcast from locations across the country, drawing over 38 million views.
Researchers studied the eclipse and its effects on Earth using a variety of techniques, including international radar networks, scientific rockets, weather balloons, and even high-altitude NASA WB-57 jets. Several NASA-funded citizen science projects also conducted experiments. These projects included more than 49,000 volunteers who contributed an astounding 53 million observations.
This infographic shares metrics from citizen science projects that occurred during the total solar eclipse on April 8, 2024. NASA/Kristen Perrin “We have opened a window for all Americans to discover our connection to the Sun and ignited enthusiasm for engaging with groundbreaking NASA science, whether it’s through spacecraft, rockets, balloons, or planes,” said Kelly Korreck, a Heliophysics program scientist at NASA Headquarters in Washington. “Sharing the excitement of NASA heliophysics with our fellow citizens has truly been amazing.”
Science Across the Solar System
NASA’s heliophysics missions gather data on the Sun and its effects across the solar system.
The Atmospheric Waves Experiment (AWE) mission launched from NASA’s Kennedy Space Center in Florida Nov. 9, 2023, and was installed on the International Space Station nine days later. This mission studies atmospheric gravity waves, how they form and travel through Earth’s atmosphere, and their role in space weather.
Orbital footage from the International Space Station shows NASA’s Atmospheric Waves Experiment (AWE) as it was extracted from SpaceX’s Dragon cargo spacecraft. NASA/International Space Station On Nov. 4, 2024, the Coronal Diagnostic Experiment (CODEX) mission also launched to the space station, where it studies the solar wind, with a focus on what heats it and propels it through space.
Pictured is the CODEX instrument inside the integration and testing facility at NASA’s Goddard Space Flight Center. NASA/CODEX team The Aeronomy of Ice in the Mesosphere (AIM) mission ended after 16 years studying Earth’s highest clouds, called polar mesospheric clouds.
An artist’s concept shows the Aeronomy of Ice in the Mesosphere (AIM) spacecraft orbiting Earth. NASA’s Goddard Space Flight/Center Conceptual Image Lab NASA’s Ionospheric Connection Explorer (ICON) also ended after three successful years studying the outermost layer of Earth’s atmosphere, called the ionosphere.
NASA’s ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above. NASA’s Goddard Space Flight Center/Conceptual Image Lab Voyager has been operating for more than 47 years, continuing to study the heliosphere and interstellar space. In October 2024, the Voyager 1 probe stopped communicating. The mission team worked tirelessly to troubleshoot and ultimately reestablish communications, keeping the mission alive to continue its research.
In this artist’s conception, NASA’s Voyager 1 spacecraft has a bird’s-eye view of the solar system. The circles represent the orbits of the major outer planets: Jupiter, Saturn, Uranus, and Neptune. Launched in 1977, Voyager 1 visited the planets Jupiter and Saturn. The spacecraft is now 13 billion miles from Earth, making it the farthest and fastest-moving human-made object ever built. In fact, Voyager 1 is now zooming through interstellar space, the region between the stars that is filled with gas, dust, and material recycled from dying stars. NASA’s Hubble Space Telescope is observing the material along Voyager’s path through space. NASA/STSci While the goal of the NASA heliophysics fleet is to study the Sun and its influence, these missions often make surprising discoveries that they weren’t originally designed to. From finding 5,000 comets to studying the surface of Venus, NASA highlighted and celebrated these bonus science connections during the Helio Big Year.
Solar Maximum
Similar to Earth, the Sun has its own seasons of activity, with a solar minimum and solar maximum during a cycle that lasts about 11 years. The Helio Big Year happened to coincide with the Sun’s active period, with NASA and NOAA announcing in October 2024 that the Sun had reached solar maximum, the highest period of activity. Some of the largest solar storms on current record occurred in 2024, and the largest sunspot in nearly a decade was spotted in the spring of 2024, followed by a colossal X9.0 solar flare Oct. 3, 2024.
Sunspots are cooler, darker areas on the solar surface where the Sun’s magnetic field gets especially intense, often leading to explosive solar eruptions. This sunspot group was so big that nearly 14 Earths could fit inside it! The eruptions from this region resulted in the historic May 2024 geomagnetic storms, when the aurora borealis, or northern lights, were seen as far south as the Florida Keys.
Credit: NASA/Beth Anthony Viewers across the U.S. spotted auroras in their communities as a result of these storms, proving that you can capture amazing aurora photography without advanced equipment.
The Big Finale: Parker’s Close Approach to the Sun
NASA’s Parker Solar Probe holds the title as the closest human-made object to the Sun. On Dec. 24, 2024, Parker made history by traveling just 3.8 million miles from the Sun’s surface at a whopping 430,000 miles per hour.
“Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters.
Controllers have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
Credit: NASA/Joy Ng Parker Solar Probe’s close approach capped off a momentous Heliophysics Big Year that allowed NASA scientists to gather unprecedented data and invited everyone to celebrate how the Sun impacts us all. In the growing field of heliophysics, the Helio Big Year reminded us all how the Sun touches everything and how important it is to continue studying our star’s incredible influence.
A Big Year Ahead
Though the Helio Big Year is over, heliophysics is only picking up its pace in 2025. We remain in the solar maximum phase, so heightened solar activity will continue into the near future. In addition, several new missions are expected to join the heliophysics fleet by year’s end.
The PUNCH mission, a set of four Sun-watching satellites imaging solar eruptions in three dimensions, and EZIE, a trio of Earth-orbiting satellites tracing the electrical currents powering Earth’s auroras, have already launched. The LEXI instrument, an X-ray telescope studying Earth’s magnetosphere from the Moon, also launched through NASA’s CLPS (Commercial Lunar Payload Services) initiative.
Future missions slated for launch include TRACERS, which will investigate the unusual magnetic environment near Earth’s poles, and ESCAPADE, venturing to Mars to measure the planet’s unique magnetic environment.
The last two missions will share a ride to space. The Carruthers Geocorona Observatory will look back at home, studying ultraviolet light emitted by the outermost boundaries of our planet’s atmosphere. The IMAP mission will instead look to the outermost edges of our heliosphere, mapping the boundaries where the domain of our Sun transitions into interstellar space.
By Desiree Apodaca
NASA’s Goddard Space Flight Center
Share
Details
Last Updated Apr 08, 2025 Editor Miles Hatfield Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate The Solar System The Sun Explore More
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
21 hours ago
2 min read Hubble Studies a Nearby Galaxy’s Star Formation
Article
4 days ago
3 min read Hubble Spots Stellar Sculptors in Nearby Galaxy
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Students from Universidad Católica Boliviana “San Pablo” compete during NASA’s 2024 Human Exploration Rover Challenge. The 2025 competition takes place Friday and Saturday, April 11-12, 2025, at the U.S. Space & Rocket Center’s Aviation Challenge course in Huntsville, Alabama. NASA NASA’s annual Human Exploration Rover Challenge returns Friday, April 11, and Saturday, April 12, with student teams competing at the U.S. Space & Rocket Center’s Aviation Challenge course near the agency’s Marshall Space Flight Center in Huntsville, Alabama.
Media are invited to watch as hundreds of students from around the world attempt to navigate a complex obstacle course by piloting a vehicle of their own design and production. Media interested in attending or setting up interviews should contact Taylor Goodwin in the Marshall Office of Communications at 938-210-2891 no later than 2 p.m. Thursday, April 10.
In addition to the traditional human-powered rover division, this year’s competition expands the challenge to include a remote-control division. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
The event is free and open to the public, with rover excursions from 7:30 a.m. to 3 p.m. CDT each day, or until the last rover completes the obstacle course.
Following the competition, NASA will host an in-person awards ceremony Saturday, April 12, at 5:30 p.m. inside the Space Camp Operations Center at the U.S. Space & Rocket Center. NASA and industry sponsors will present multiple awards highlighting team successes throughout the past eight-months-long engineering design project, including awards for best rover design, best pit crew, best social media presence, and many other accomplishments.
About the Challenge
Recognized as NASA’s leading international student challenge, the Human Exploration Rover Challenge aims to put competitors in the mindset of NASA’s Artemis campaign. Teams pitch an engineering design for a lunar rover which simulates astronauts exploring the lunar surface while overcoming various obstacles. Eligible teams compete to be among the top three finishers in their divisions, and to win multiple awards, including best vehicle design, best rookie team, and more.
The annual challenge draws hundreds of students from around the world and reflects the goals of NASA’s Artemis campaign, which will establish the first long-term presence on the Moon and pave the way for eventual missions to Mars.
The event was launched in 1994 as the NASA Great Moonbuggy Race – a collegiate competition to commemorate the 25th anniversary of the Apollo 11 lunar landing. It expanded in 1996 to include high school teams, evolving again in 2014 into the NASA Human Exploration Rover Challenge. Since its inception, more than 15,000 students have participated – with many former students now working in the aerospace industry, including with NASA.
The Human Exploration Rover Challenge is managed by NASA Marshall’s Southeast Regional Office of STEM Engagement and is one of eight Artemis Student Challenges. NASA’s Office of STEM Engagement uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.
To learn more about the challenge, visit:
https://www.nasa.gov/roverchallenge/
Taylor Goodwin
256-544-0034
Marshall Space Flight Center, Huntsville, Alabama
taylor.goodwin@nasa.gov
Facebook logo @RoverChallenge@NASAMarshallCenter @RoverChallenge@NASA_Marshall Instagram logo @NASA_Marshall Share
Details
Last Updated Apr 04, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
General Explore More
3 min read Caroline Cawthon: Supporting America’s Future in Low Earth Orbit
Article 17 hours ago 6 min read Back to Earth, Forward to the Future: NASA’s SpaceX Crew-9 Returns
Article 23 hours ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
These Firm Fixed-Price, Indefinite-Delivery Requirements contracts were awarded to SpaceX, United Launch Services, and Blue Origin to provide critical space support to meet national security objectives.
View the full article
-
By NASA
13 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Getty Images University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.
The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.
Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.
The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.
A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A
Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.
USRC Awards
Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
Faculty Mentors: Jaewon Kim and Sandip Roy
Selected: 2025
Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
Faculty Mentor: Felix Ewere
Selected: 2025
Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
Faculty Mentor: Omid Beik
Selected: 2024
Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
Mitigating wildfires with drone released fire retardant pellets.
Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
Faculty Mentor: Janet McLarty-Schroeder
Selected: 2024
Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
Faculty Mentor: Sanjiban Choudhury, Susan Fussell
Selected: 2024
Crowdfunding Website
Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
Faculty Mentor: Fiona Spencer, Robert Breidenthal
Selected: 2024
Crowdfunding Website
Web Article: “Students win NASA grant to develop AI for safer aerial traffic“
Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
An ocean-based fueling station and a survey drone that can refuel in remote areas.
Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
Faculty Mentor: Li Qiao
Selected: 2023
Crowdfunding Website
Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
Faculty Mentor: Xiangyu Meng
Selected: 2023
Crowdfunding Website
Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
Faculty Mentor: Cynthia Flores
Selected: 2023
Crowdfunding Website
Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
Faculty Mentor: Sergey V. Drakunov
Selected: 2023
Crowdfunding Website
Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge“
AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
Creating new propeller blades and fixed wing design concepts that mimic the features of an
owl feather and provide substantial noise reduction benefits.
Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
Faculty Mentor: Bhisham Sharma
Selected: 2023
Crowdfunding Website
Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
Faculty Mentor: Woongkul Lee
Selected: 2023
Crowdfunding Website
LEADS team Website
UAM Contingency Diagnosis Toolkit (Ohio State University)
A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
Faculty Mentor: Martijn IJtsma
Selected: 2023
Crowdfunding Website
Project Website
Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge“
Hybrid Quadplane Search and Rescue Missions (NC A&T University)
An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
Faculty Mentor: A. Homaifar
Selected: 2023
Crowdfunding Website
Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
An autonomous water sampling drone system.
Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
Faculty Mentor: Onur Bilgen
Selected: 2023
Crowdfunding Website
Project Website
Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
Faculty Mentor: John Lewandowski
Selected: 2023
Crowdfunding Website
Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine“
Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
Faculty Mentor: Venkatesan Muthukumar
Selected: 2022
Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
Faculty Mentor: Adam Nokes
Selected: 2022
Crowdfunding Website
Project Website
Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge“
Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
Faculty Mentor: Victor Maldonado
Selected: 2022
Crowdfunding Website
Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies“
Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
Faculty Mentor: Bo Zou
Selected: 2022
Crowdfunding Website
Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems“
Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
Faculty Mentor: Naira Hovakimyan
Selected: 2022
Crowdfunding Website
Web Article: “NASA funds UAV traffic management research“
AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
An aerostat enabled low-energy UAV payload delivery system
Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
Faculty Mentor: Suresh Advani
Selected: 2022
Crowdfunding Website
Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
Faculty Mentor: Edward DeMauro
Selected: 2022
Crowdfunding Website
Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge“
A recorded STRATO USRC Tech Talk
Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
Faculty Mentor: Jane Cleland-Huang
Selected: 2021
Crowdfunding Website
Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology“
Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
Faculty Mentor: Woongkul Lee
Selected: 2021
AIDED Crowdfunding Website
AIDED Project Website or Team Website
Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA“
A recorded USRC Tech Talk
Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
Faculty Mentor: Christopher Williams
Selected: 2021
Crowdfunding Website
RAV-FAB Project Website
Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech“
NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants“
Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect
Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube
View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2
Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
Faculty Mentor: Atieh Moridi
Selected: 2021
Crowdfunding Website
AMAS Project Website
Web Article: “Students win NASA challenge with 3D-printer smart sensor“
A recorded USRC Tech Talk on this topic
AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
A drone swarm system capable of carrying a payload in the air indefinitely
Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
Faculty Mentor: Jeff Eldredge
Selected: 2020
Crowdfunding Website
AVIATA Project Website
A recorded USRC Tech Talk on AVIATA
The recorded poster session at the TACP Showcase 2021
Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
Faculty Mentor: John Robbins
Selected: 2020
Crowdfunding Website
Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition“
Follow the team’s progress at: https://www.facebook.com/Assured Autonomy
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
Extending drone delivery distance with a multi-mode hybrid delivery system
Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
Faculty Mentor: Onur Bilgen
Selected: 2020
Crowdfunding Website
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
Faculty Mentor: Kelly Griendling
Selected: 2020
Go to AVIS team site
A recorded USRC Tech Talk on AVIS
The recorded poster session at the TACP Showcase 2021
NASA Web Article
Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
Model and test powertrain to maximize the efficiency of hybrid airplanes
Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
Faculty Mentor: Paulo Iscold
Selected: 2019
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
ATLAS Air Transportation (South Dakota State University)
A multipurpose, automated drone capable of comfortably lifting the weight of an average person
Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS
The recorded poster session at the TACP Showcase 2021
Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
A novel solution of enhanced GPS navigation for unmanned aerial vehicles
Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
Crowdfunding Website
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
UAV Traffic Information Exchange Network (Purdue University)
A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
Selected: 2018
Web Article: “Student-developed communication network for UAVs interests NASA“
The recorded poster session at the TACP Showcase 2021
University Student Research Challenge
University Leadership Initiative
University Innovation Project
Transformative Aeronautics Concepts Program
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA University Research Program Makes First Award to a Community College Project
Article 1 month ago 3 min read NASA Selects New Round of Student-Led Aviation Research Awards
Article 1 month ago 4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
Article 1 year ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Solar System Exploration
Follow Us on Social Media
Explore NASA’s History
Share
Details
Last Updated Apr 03, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
University Student Research Challenge View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.