Members Can Post Anonymously On This Site
Planet Or Failed Star? NASA's Hubble Telescope Photographs One of Smallest Stellar Companions Ever Seen
-
Similar Topics
-
By NASA
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand This image, released on Feb. 12, 2025, is the deepest X-ray image ever made of the spectacular star forming region called 30 Doradus. By combining X-ray data from NASA’s Chandra X-ray Observatory (blue and green) with optical data from NASA’s Hubble Space Telescope (yellow) and radio data from the Atacama Large Millimeter/submillimeter Array (orange), this stellar arrangement comes alive.
Otherwise known as the Tarantula Nebula, 30 Dor is located about 160,000 light-years away in a small neighboring galaxy to the Milky Way known as the Large Magellanic Cloud. Because it one of the brightest and populated star-forming regions to Earth, 30 Dor is a frequent target for scientists trying to learn more about how stars are born.
Learn more about this new image and what it reveals.
Image credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Captures a Cosmic Cloudscape
This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away. ESA/Hubble & NASA, C. Murray
Download this image
The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include of bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
Caldwell 103 / Tarantula Nebula / 30 Doradus
Hubble Studies the Tarantula Nebula’s Outskirts
Hubble’s New View of the Tarantula Nebula
Hubble’s Bubbles in the Tarantula Nebula
Hubble Probes Interior of Tarantula Nebula
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Absorption or Dark Nebulae Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Star-forming Nebulae The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Exploring the Birth of Stars
Hubble’s Night Sky Challenge
Hubble Focus: The Lives of Stars
This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx mission will survey the Milky Way galaxy looking for water ice and other key ingredients for life. In the search for these frozen compounds, the mission will focus on molecular clouds — collections of gas and dust in space — like this one imaged by the agency’s James Webb Space Telescope. NASA, ESA, CSA Where is all the water that may form oceans on distant planets and moons? The SPHEREx astrophysics mission will search the galaxy and take stock.
Every living organism on Earth needs water to survive, so scientists searching for life outside our solar system, are often guided by the phrase “follow the water.” Scheduled to launch no earlier than Thursday, Feb. 27, NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) mission will help in that quest.
After its ride aboard a SpaceX Falcon 9 from Vandenberg Space Force base in California, the observatory will search for water, carbon dioxide, carbon monoxide, and other key ingredients for life frozen on the surface of interstellar dust grains in the clouds of gas and dust where planets and stars eventually form.
While there are no oceans or lakes floating freely in space, scientists think these reservoirs of ice, bound to small dust grains, are where most of the water in our universe forms and resides. Additionally, the water in Earth’s oceans as well as those of other planets and moons in our galaxy likely originated in such locations.
The Perseus Molecular Cloud, located about 1,000 light-years from Earth, was imaged by NASA’s retired Spitzer Space Telescope. NASA’s SPHEREx mission will search the galaxy for water ice and other frozen compounds in clouds of gas and dust in space like this one. NASA/JPL-Caltech The mission will focus on massive regions of gas and dust called molecular clouds. Within those, SPHEREx will also look at some newly formed stars and the disks of material around them from which new planets are born.
Although space telescopes such as NASA’s James Webb and retired Spitzer have detected water, carbon dioxide, carbon monoxide, and other compounds in hundreds of targets, the SPHEREx observatory is the first to be uniquely equipped to conduct a large-scale survey of the galaxy in search of water ice and other frozen compounds.
Get the SPHEREx Press Kit Rather than taking 2D images of a target like a star, SPHEREx will gather 3D data along its line of sight. That enables scientists to see the amount of ice present in a molecular cloud and observe how the composition of the ices throughout the cloud changes in different environments.
By making more than 9 million of these line-of-sight observations and creating the largest-ever survey of these materials, the mission will help scientists better understand how these compounds form on dust grains and how different environments can influence their abundance.
Tip of the Iceberg
It makes sense that the composition of planets and stars would reflect the molecular clouds they formed in. However, researchers are still working to confirm the specifics of the planet formation process, and the universe doesn’t always match scientists’ expectations.
For example, a NASA mission launched in 1998, the Submillimeter Wave Astronomy Satellite (SWAS), surveyed the galaxy for water in gas form — including in molecular clouds — but found far less than expected.
BAE Systems employees work on NASA’s SPHEREx observatory in the Astrotech Space Operations facility at Vandenberg Space Force Base in California on Jan. 16. Targeting a Feb. 27 launch, the mission will map the entire sky in infrared light. NASA/JPL-Caltech “This puzzled us for a while,” said Gary Melnick, a senior astronomer at the Center for Astrophysics | Harvard & Smithsonian and a member of the SPHEREx science team. “We eventually realized that SWAS had detected gaseous water in thin layers near the surface of molecular clouds, suggesting that there might be a lot more water inside the clouds, locked up as ice.”
The mission team’s hypothesis also made sense because SWAS detected less oxygen gas (two oxygen atoms bound together) than expected. They concluded that the oxygen atoms were sticking to interstellar dust grains, and were then joined by hydrogen atoms, forming water. Later research confirmed this. What’s more, the clouds shield molecules from cosmic radiation that would otherwise break those compounds apart. As a result, water ice and other materials stored deep in a cloud’s interior are protected.
As starlight passes through a molecular cloud, molecules like water and carbon dioxide block certain wavelengths of light, creating a distinct signature that SPHEREx and other missions like Webb can identify using a technique called absorption spectroscopy.
In addition to providing a more detailed accounting of the abundance of these frozen compounds, SPHEREx will help researchers answer questions including how deep into molecular clouds ice begins to form, how the abundance of water and other ices changes with the density of a molecular cloud, and how that abundance changes once a star forms.
Powerful Partnerships
As a survey telescope, SPHEREx is designed to study large portions of the sky relatively quickly, and its results can be used in conjunction with data from targeted telescopes like Webb, which observe a significantly smaller area but can see their targets in greater detail.
“If SPHEREx discovers a particularly intriguing location, Webb can study that target with higher spectral resolving power and in wavelengths that SPHEREx cannot detect,” said Melnick. “These two telescopes could form a highly effective partnership.”
More About SPHEREx
SPHEREx is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA/IPAC Infrared Science Archive.
For more information about the SPHEREx mission visit:
https://www.jpl.nasa.gov/missions/spherex/
6 Things to Know About SPHEREx Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-020
Share
Details
Last Updated Feb 13, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory Stars The Universe Explore More
5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Discovery proves decades-old theory of galaxy feeding cycle. Researchers using NASA’s James Webb Space Telescope…
Article 2 hours ago 4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
Article 1 day ago 4 min read NASA’s Mini Rover Team Is Packed for Lunar Journey
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand A bouquet of thousands of stars in bloom has arrived. This composite image contains the deepest X-ray image ever made of the spectacular star forming region called 30 Doradus.
By combining X-ray data from NASA’s Chandra X-ray Observatory (blue and green) with optical data from NASA’s Hubble Space Telescope (yellow) and radio data from the Atacama Large Millimeter/submillimeter Array (orange), this stellar arrangement comes alive.
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand Otherwise known as the Tarantula Nebula, 30 Dor is located about 160,000 light-years away in a small neighboring galaxy to the Milky Way known as the Large Magellanic Cloud (LMC). Because it one of the brightest and populated star-forming regions to Earth, 30 Dor is a frequent target for scientists trying to learn more about how stars are born.
With enough fuel to have powered the manufacturing of stars for at least 25 million years, 30 Dor is the most powerful stellar nursery in the local group of galaxies that includes the Milky Way, the LMC, and the Andromeda galaxy.
The massive young stars in 30 Dor send cosmically strong winds out into space. Along with the matter and energy ejected by stars that have previously exploded, these winds have carved out an eye-catching display of arcs, pillars, and bubbles.
A dense cluster in the center of 30 Dor contains the most massive stars astronomers have ever found, each only about one to two million years old. (Our Sun is over a thousand times older with an age of about 5 billion years.)
This new image includes the data from a large Chandra program that involved about 23 days of observing time, greatly exceeding the 1.3 days of observing that Chandra previously conducted on 30 Dor. The 3,615 X-ray sources detected by Chandra include a mixture of massive stars, double-star systems, bright stars that are still in the process of forming, and much smaller clusters of young stars.
There is a large quantity of diffuse, hot gas seen in X-rays, arising from different sources including the winds of massive stars and from the gas expelled by supernova explosions. This data set will be the best available for the foreseeable future for studying diffuse X-ray emission in star-forming regions.
The long observing time devoted to this cluster allows astronomers the ability to search for changes in the 30 Dor’s massive stars. Several of these stars are members of double star systems and their movements can be traced by the changes in X-ray brightness.
A paper describing these results appears in the July 2024 issue of The Astrophysical Journal Supplement Series. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features a highly detailed composite image of a star-forming region of space known as 30 Doradus, shaped like a bouquet, or a maple leaf.
30 Doradus is a powerful stellar nursery. In 23 days of observation, the Chandra X-ray telescope revealed thousands of distinct star systems. Chandra data also revealed a diffuse X-ray glow from winds blowing off giant stars, and X-ray gas expelled by exploding stars, or supernovas.
In this image, the X-ray wind and gas takes the shape of a massive purple and pink bouquet with an extended central flower, or perhaps a leaf from a maple tree. The hazy, mottled shape occupies much of the image, positioned just to our left of center, tilted slightly to our left. Inside the purple and pink gas and wind cloud are red and orange veins, and pockets of bright white light. The pockets of white light represent clusters of young stars. One cluster at the heart of 30 Doradus houses the most massive stars astronomers have ever found.
The hazy purple and pink bouquet is surrounded by glowing dots of green, white, orange, and red. A second mottled purple cloud shape, which resembles a ring of smoke, sits in our lower righthand corner.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Explore More
4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
Article 20 mins ago 5 min read NASA Scientists Spot Candidate for Speediest Exoplanet System
Article 2 days ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
“I’m hopeful anyone, regardless of their scientific background, could read a Hubble post and understand the gist of it and be interested in it,” said Elizabeth Tammi, social media lead for the Hubble Space Telescope. “I also read our stories with the eye of the potential audience member: What are they going to care about? What is going to bring them into this story? What is going to make them want to read more?”Credits: Courtesy of Elizabeth Tammi Name: Elizabeth Tammi
Title: Hubble Space Telescope Social Media Lead
Formal Job Classification: Communications Specialist
Organization: Hubble Space Telescope Operations (Code 441)
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I am the social media lead for the Hubble Space Telescope mission at Goddard. In short, Hubble is an orbiting observatory that’s been in low-Earth orbit for more than 30 years. It’s one of NASA’s flagship missions, probably one of its most iconic missions. Hubble has shaped our understanding of how we imagine the universe — visually how we think about it.
I run Hubble’s Twitter, Facebook, Instagram, and Flickr, along with various other multimedia and communications tasks. We’re a very close-knit team, so we collaborate a lot, both within our team, and with other missions across the agency as well.
I’m primarily focused on social media and figuring out how are we going to share our news. On any given day, I might also be working on a script, editing news releases, or working with other accounts on social media campaigns. It’s different every day, which I really like.
What is your educational background?
I went to Mercer University, which is in Macon, Georgia. I graduated in 2020 with a degree in journalism and creative writing. There, they have a great program called the Center for Collaborative Journalism, which allowed us to work in newsrooms for academic credit. That was really useful, especially in this field, getting that hands-on experience and getting published from my freshman year on. I was eventually able to intern at Goddard the summer before my senior year. I really don’t think that would have been possible if I hadn’t had the audio production experience that Mercer allowed me to get, along with just all aspects of journalism, media, and communications.
“Hubble is one of NASA’s flagship missions, probably one of its most iconic missions,” said Elizabeth Tammi, social media lead for the Hubble Space Telescope. “Hubble has shaped our understanding of how we imagine the universe — visually how we think about it.”Credits: Courtesy of Elizabeth Tammi How does your writing experience contribute to your role with Hubble?
I know how to write accessibly and in a straightforward manner. I’m hopeful anyone, regardless of their scientific background, could read a post and understand the gist of it and be interested in it. That’s the goal. I try to come up with interesting turns of phrase when I can. I also read our stories with the eye of the potential audience member: What are they going to care about? What is going to bring them into this story? What is going to make them want to read more?
Outside work, you’ve written and published books. What inspired you to decide to write?
There’s not a day I can remember where I wasn’t absolutely infatuated with books. I think my parents read to me long before I could even understand them. It was just always such a huge part of my life — and I loved, loved, loved reading. When I realized that actual people wrote books, then I knew I wanted to write. To be clear, I didn’t take real steps toward that until I was about 15, 16-ish years old, because I guess in my mind, I still had this idea that authors were more than human.
I’ve since had two novels published. Both are in the fantasy genre and earned complimentary reviews; my second novel even earned a Moonbeam Children’s Book Award.
“I know it can be intimidating, to think about NASA as a place to intern,” said Hubble Space Telescope social media lead Elizabeth Tammi. “If you have any interest in space, I think that’s the most important part: People who are passionate and interested in our space program.”Credits: Courtesy of Elizabeth Tammi What do you most enjoy about sharing the Hubble story?
I think my favorite part is reading the comments that we get from the public, just because everyone has been so supportive of the telescope. Social media can put on display the best and worst aspects of humanity. It’s very nice to see this supportive corner of the Internet.
So far, what I’ve really enjoyed was our “Deep Field Week” social media campaign, which was around the 25th anniversary of the Hubble Deep Field image . To the unaided eye, this was a seemingly empty patch of sky. Hubble revealed it has countless galaxies. It was a really staggering finding and definitely was a huge cultural shift in how we think about our universe.
Previously, you were a NASA intern from the Summer of 2019 to May 2020. How has that experience shaped your current role?
It was absolutely vital. I don’t think I would be here in this position without that internship experience. It was the summer before my senior year of college. I got to go up to Goddard for summer 2019 and I was working primarily as an audio production intern, though the internship afforded me the opportunity to contribute to the newsroom’s work overall.
I worked with Katie Atkinson, who I also went to college with, and we got to work on the 50th anniversary of the Apollo 11 mission. One of my primary tasks that summer was working on an oral history campaign tied to Apollo 11’s 50th anniversary . We encouraged people from all over to send in audio accounts of what they remember experiencing when Apollo 11 landed on the Moon in 1969. Or, if they didn’t remember seeing it as it happened, how did the landing affect them and their view of the world, or their career aspirations, or if they have family stories tied to Apollo.
If I could describe my NASA experience with a book title, it would be the term “Galaxy Brain.” It’s when you have a normal thought but then you think harder, and it gets bigger. From the idea of constantly feeling mind-blown by the work that’s going on around me to being part of it makes me feel, “Oh my gosh!” This “Galaxy Brain” imagery symbolizes the enormous magnitude of everything that is interesting and mysterious. It’s just something that’s constantly engaging.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
By Elissa Fielding
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.