Members Can Post Anonymously On This Site
NASA’s X-59 Rollout Embodies Aeronautical Tradition
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An artist’s concept of the X-66 aircraft Boeing will produce through NASA’s Sustainable Flight Demonstrator project. The aircraft, designed to prove the concept of more aerodynamic, fuel-efficient transonic truss-braced wings, is an example of the type of project model-based systems analysis and engineering will provide benefits to.Boeing As NASA continues cutting-edge aeronautics research, the agency also is taking steps to make sure the benefits from these diverse technologies are greater than the sum of their parts.
To tackle that challenge, NASA is using Model-Based Systems Analysis and Engineering (MBSAE). This type of engineering digitally simulates how multiple technologies could best work together as a single, complex system. It is performed using advanced digital tools and computing programs.
The goal: Optimize the next generation of 21st-century aviation technology.
Model Benefits
“MBSAE provides a way to envision how all these technologies, being developed separately, can all fit together in the end,” said Eric Hendricks, who leads MBSAE integration efforts for NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington.
By using this form of digital engineering, NASA’s aeronautical innovators can have a better idea of how their research in one area (say, ultra-efficient airliners) could best benefit, and work in tandem, with another area (say, future airspace safety).
Using detailed, customizable digital models, researchers can simulate these complex systems working together with a high degree of accuracy and then figure out how the greatest benefits could be achieved.
“As we move toward these advanced systems, MBSAE can connect different disciplines and determine how to eke out the best performance,” Hendricks said.
That process feeds back into the research itself, helping researchers to significantly improve aviation’s sustainability – amongst other goals.
Zeroing In
MBSAE does more than integrating complex systems, however. Each system, individually, can be optimized using MBSAE tools.
“Before the technology is even fully developed, we can run highly accurate digital simulations that inform the research itself,” Hendricks said. “A digital flight test is a lot simpler and less costly than a real flight test.”
For example, one of NASA’s new MBSAE tools, Aviary, includes the ability to consider gradients. That means Aviary can figure out how to more efficiently optimize a given technology.
Say a researcher would like to know which type of battery is needed to power an airplane during a certain maneuver. The researcher inputs information about the airplane, the maneuver, and battery technologies into Aviary, then Aviary goes and runs digital flight tests and comes back with which type of battery worked best.
Digital flights tests like this can be done for myriad other areas as well, ranging from an aircraft’s overall shape to the size of its engine core, its electrical systems, and beyond. Then, the digital flight tests can help figure out how to combine these systems in the most effective way.
Digital Era Aeronautics
Another way MBSAE can come in handy is the scale of these aviation transformations.
With demand for single-aisle airliners expected to rise dramatically in the coming decades, measuring the emissions reductions from a certain wing design, for example, would not just extend to one aircraft, but also an entire fleet.
“We’ll be able to take what we learn from our sustainable aviation projects and simulate the technology entering the fleet at certain points,” said Rich Wahls, NASA’s mission integration manager for the Sustainable Flight National Partnership at NASA Headquarters. “We can model the fleet itself to see how much more sustainable these technologies are across the board.”
Ultimately, MBSAE also represents a new era in aeronautical innovation – both at NASA and in the aviation industry, with whom NASA is working closely to ensure its MBSAE efforts are cross compatible on an opensource platform.
“The MBSAE team has lots of early-to-mid career folks,” Hendricks said. “It’s great to see the younger generation get involved and even take the lead, especially since these digital efforts can facilitate knowledge transfer as well.”
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read System-Wide Safety Project Description
Article 4 days ago 1 min read System-Wide Safety Project Leadership
Article 4 days ago 3 min read NASA Embraces Streaming Service to Reach, Inspire Artemis Generation
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Aug 04, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Sustainable Flight National Partnership View the full article
-
By NASA
The core stage is the backbone of the SLS (Space Launch System) rocket that will help power NASA’s Artemis II mission to send a crew of four astronauts around the Moon in 2025. Here, the core stage is currently behind scaffolding to allow work to continue at NASA’s Michoud Assembly Facility in New Orleans. The stage’s two massive propellant tanks hold a collective 733,000 gallons of liquid propellant to power the four RS-25 engines at its base. Following hardware acceptance reviews and final checkouts, the stage will be readied for delivery via the agency’s Pegasus barge to NASA’s Kennedy Space Center in Florida for Artemis II launch preparations. (NASA/ Eric Bordelon) NASA will roll the fully assembled core stage for the agency’s SLS (Space Launch System) rocket that will launch the first crewed Artemis mission out of NASA’s Michoud Assembly Facility in New Orleans in mid-July. The 212-foot-tall stage will be loaded on the agency’s Pegasus barge for delivery to Kennedy Space Center in Florida.
Media will have the opportunity to capture images and video, hear remarks from agency and industry leadership, and speak to subject matter experts with NASA and its Artemis industry partners as crews move the rocket stage to the Pegasus barge.
NASA will provide additional information on specific timing later, along with interview opportunities. This event is open to U.S. and international media. International media must apply by June 14. U.S. media must apply by July 3. The agency’s media credentialing policy is available online.
Interested media must contact Corinne Beckinger at corinne.m.beckinger@nasa.gov and Craig Betbeze at craig.c.betbeze@nasa.gov. Registered media will receive a confirmation by email.
The rocket stage with its four RS-25 engines will provide more than 2 million pounds of thrust to send astronauts aboard the Orion spacecraft for the Artemis II mission. Once at Kennedy, teams with NASA’s Exploration Ground Systems Program will finish outfitting the stage and prepare it for stacking and launch. Artemis II is currently scheduled for launch in September 2025.
Building, assembling, and transporting the core stage is a collaborative process for NASA, Boeing, the core stage lead contractor, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3 Harris Technologies company.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under the agency’s Artemis campaign. The SLS rocket is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. The SLS rocket is the only rocket designed to send Orion, astronauts, and supplies to the Moon in a single launch.
Learn more about NASA’s Artemis campaign:
https://www.nasa.gov/artemis/
-end-
Rachel Kraft
NASA Headquarters, Washington
202-358-1100
rachel.h.kraft@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
NASA will roll the fully assembled core stage for the agency’s SLS (Space Launch System) rocket that will launch the first crewed Artemis mission out of NASA’s Michoud Assembly Facility in New Orleans in mid-July. The 212-foot-tall stage will be loaded on the agency’s Pegasus barge for delivery to Kennedy Space Center in Florida.
Media will have the opportunity to capture images and video, hear remarks from agency and industry leadership, and speak to subject matter experts with NASA and its Artemis industry partners as crews move the rocket stage to the Pegasus barge.
The core stage is the backbone of the SLS (Space Launch System) rocket that will help power NASA’s Artemis II mission to send a crew of four astronauts around the Moon in 2025. Here, the core stage is currently behind scaffolding to allow work to continue at NASA’s Michoud Assembly Facility in New Orleans. The stage’s two massive propellant tanks hold a collective 733,000 gallons of liquid propellant to power the four RS-25 engines at its base. Following hardware acceptance reviews and final checkouts, the stage will be readied for delivery via the agency’s Pegasus barge to NASA’s Kennedy Space Center in Florida for Artemis II launch preparations. NASA will provide additional information on specific timing later, along with interview opportunities. This event is open to U.S. and international media. International media must apply by June 14. U.S. media must apply by July 3. The agency’s media credentialing policy is available online.
Interested media must contact Corinne Beckinger at corinne.m.beckinger@nasa.gov and Craig Betbeze at craig.c.betbeze@nasa.gov. Registered media will receive a confirmation by email.
The rocket stage with its four RS-25 engines will provide more than 2 million pounds of thrust to send astronauts aboard the Orion spacecraft for the Artemis II mission. Once at Kennedy, teams with NASA’s Exploration Ground Systems Program will finish outfitting the stage and prepare it for stacking and launch. Artemis II is currently scheduled for launch in September 2025.
Building, assembling, and transporting the core stage is a collaborative process for NASA, Boeing, the core stage lead contractor, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3 Harris Technologies company.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under the agency’s Artemis campaign. The SLS rocket is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. The SLS rocket is the only rocket designed to send Orion, astronauts, and supplies to the Moon in a single launch.
Learn more about NASA’s Artemis campaign:
News Media Contact
Rachel Kraft
NASA Headquarters, Washington
202-358-1100
rachel.h.kraft@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
Operational modal analysis (OMA) techniques have been used to identify the modal characteristics of the Artemis I launch vehicle during the Dynamic Rollout Test (DRT) and Wet Dress Rehearsal (WDR) configuration prior to launch. Forces induced during rollout and on the launch pad are not directly measurable, thus necessitating a unique approach.
NASA is developing the SLS to support lunar and deep space exploration. SLS is integrated inside the Vehicle Assembly Building (VAB) on the mobile launcher (ML), which supports the integrated SLS launch vehicle during transport to the pad through lift-off. The ML also provides the fuel, power, and data umbilicals running to the SLS and Orion Multi-Purpose Crew Vehicle (MPCV), as well as crew access to the MPCV crew module. The ML weighs ~10.6 million pounds and is over 380 feet tall. In the spring of 2022, the SLS was transported on the ML from the VAB to Launch Pad 39B (Figure 1) using the NASA crawler transporter (CT) to make this 4.2 mile trek, which takes ~8 hours. The CT alone weighs ~6.3 million pounds.
Figure 1. Artemis I Rollout to Launch Pad 39B. Although the rollout environment produces relatively small launch vehicle structural loads in comparison to launch and ascent loads for most structures, the induced loads are fully representative of all loading across the entire vehicle, which is not feasible to replicate using localized shakers as was done in the Integrated Modal Test. As mentioned, forces induced during rollout and on the launch pad are not directly measurable, and OMA techniques were used to identify the modal characteristics of Artemis I in the DRT and WDR configurations. WDR, which typically includes vehicle fueling and other operations to demonstrate launch readiness, included several days of on-pad operations. Data collected for the WDR configuration, with partially filled core fuel tanks and without the CT under the ML, provided engineers another model configuration to check (Figure 2).
Figure 2. Artemis I at Launch Pad 39B. Acquisition and processing the data from over 300 accelerometers located on Artemis I, ML, and CT was accomplished by a cross-program team of engineers and technicians from across the Agency, including from SLS, Exploration Ground Systems, and the NESC. Using analytical techniques developed from previous rollout tests combined with new data-processing methodologies, the team processed data from preselected CT speed increments during rollout and on-pad during WDR. By making the necessary modifications to the integrated models to match both the DRT and WDR configurations, the team was able to use those results to help make sense of what was being seen in the test data. This proved to be required for OMA testing on this structure, given the type of complex excitation that was being observed.
For information, contact Dexter Johnson dexter.johnson@nasa.gov and Teresa Kinney teresa.l.kinney@nasa.gov.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This staged scene and illustration represents what you might see when NASA’s University Innovation project awards teams of students with funds to conduct real-world aeronautical research that will help the agency transform aviation for the 21st century. NASA /Lillian Gipson / Getty Images NASA has selected another five university teams to participate in real-world aviation research challenges that could help transform flight in the skies above our communities.
Research topics range from safeguarding automated aircraft from cyberattacks to finding ways to help aircraft operations across the nation more quickly recover from delays due to major storms or technical problems.
“The idea is to give students, faculty and their partners the chance to conduct research – both physical and digital – that helps us realize our vision for 21st century aviation that is sustainable and offers more diverse air travel options,” said Koushik Datta, University Innovation project manager for NASA’s Aeronautics Research Mission Directorate.
The University Innovation project includes two efforts through which universities are invited to submit research proposals and from which teams are then selected: the University Leadership Initiative (ULI) and the University Student Research Challenge (USRC).
A key ULI goal is for faculty-led student teams to gain experience by participating in aeronautics research on a multidisciplinary team made up of partners from other universities and industry, including faculty and student populations who are underrepresented or have not applied their skills to aviation problems.
Meanwhile, in addition to conducting technical research, student-led USRC teams help them develop skills in entrepreneurship and public communication. Each team of students selected receives a USRC grant from NASA – and the additional challenge of raising funds from the public through student-led crowdfunding.
ULI makes selections once a year, while USRC manages multiple selection cycles each year, with proposals for the next selection cycle due by 5 p.m. EDT on March 21. Visit the NASA Aeronautics Solicitations page for more information.
For ULI, three teams were selected resulting in a total of $18 million in awards during the next three years. For each team, the proposing university will serve as lead. The new ULI selections are:
University of California, Berkeley
The team will test ideas for improving the ability of the National Airspace System to become more resilient to reduce the disruptive impact major storms, facility outages, and other technical issues can have on airline flight operations. Team members include University of Maryland, University of Michigan, Morgan State University, University of Pennsylvania, Elizabeth City State University, United Airlines, Patty Clark Aviation Advisors, ATAC Corporation, Mead and Hunt, American Airlines, Vaughan College of Aeronautics and Technology, The Federal Aviation Administration, Lansing Community College, Community College of Philadelphia, and City College of San Francisco.
Ohio University
The team will seek to solve technical challenges associated with the ability of large drones to safely taxi, take off, and land at airports using automated navigation systems. Team members include Illinois Institute of Technology, Virginia Polytechnic Institute and State University, Tufts University, Stanford University, Veth Research Associates LLC, Reliable Robotics Corporation, Boeing, and Virginia Tech Transportation Institute.
The George Washington University
The team will investigate measures that can be taken to safeguard autonomous aircraft flying in high-density urban airspace from cyberattacks that could disrupt safe operations. Team members include Vanderbilt University, Purdue University, Tennessee State University, University of California, Irvine, The University of Texas at Austin, Collins Aerospace, Northern Virginia Community College, Cyber Security and Privacy Research Institute at The George Washington University, Skygrid (a Boeing Company), and the Secure Resilient Systems and Technology Group at MIT Lincoln Laboratory.
For USRC, NASA selected two new university student teams to participate in this cycle with a USRC grant that can be up to $80,000. The new USRC selections are:
Cornell University
The team’s project is titled “Learning Cooperative Policies for Adaptive Human-Drone Teaming in Shared Airspace” and will work to enable new coordination and communication models for smoother, more efficient and robust air traffic flow. The student team members are: Mehrnaz Sabet (lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, and Austin Zhao. Faculty mentors are Sanjiban Choudhury and Susan Fussell.
University of Washington, Seattle
The team’s project is titled “Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage” and will investigate using vortex generators to reduce the boil-off of cryogenic fluids in pipes. Student team members are Ryan Fidelis (lead), Alexander Ala, and Robert Breidenthal. The faculty mentor is Fiona Spencer.
About the Author
Jim Banke
Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 35 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA Collaborates in an International Air Quality Study
Article 1 week ago 2 min read NASA Releases STEM Toolkit for Advanced Air Mobility
Article 3 weeks ago 4 min read NASA Autonomous Flight Software Successfully Used in Air Taxi Stand-Ins
Article 4 weeks ago Keep Exploring Discover More Topics From NASA
Aeronautics STEM
Black History Month
NASA History
Aeronautics Research Mission Directorate
Share
Details
Last Updated Feb 21, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Leadership Initiative University Student Research Challenge View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.