Jump to content

Recommended Posts

Posted
low_STSCI-H-p-0644a-k-1340x520.png

A systematic search for the first bright galaxies to form in the early universe has revealed a dramatic jump in the number of such galaxies around 13 billion years ago. These observations of the earliest stages in the evolution of galaxies provide new evidence for the hierarchical theory of galaxy formation – the idea that large galaxies built up over time as smaller galaxies collided and merged. Astronomers at the University of California, Santa Cruz, used NASA's Hubble Space Telescope to explore the formation of galaxies during the first 900 million years after the Big Bang. They reported their latest findings in the September 14 issue of the journal Nature. Deep observations in three dark patches of sky – the Hubble Ultra Deep Field and the Great Observatories Origins Deep Survey fields – gathered the faint light emitted 13 billion years ago by stars in primeval galaxies. Only the brightest galaxies could be detected at such great distances. The researchers observed hundreds of bright galaxies at around 900 million years after the Big Bang. But when they looked deeper, about 200 million years earlier in time, they only found one. Relaxing their search criteria a bit turned up a few more candidates, so there must have been a lot of merging of smaller galaxies during those 200 million years.

This panel shows four candidate galaxies that are likely to have redshifts of 7 and thus have emitted their light when the universe was just 750 million years old. Astronomers can determine when light was emitted from a distant source by its redshift, a measure of how the expansion of the universe stretched the wavelengths of the light as it traveled through space across vast distances.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Long before joining NASA’s Test and Evaluation Support Team contract in October 2024, Angel Saenz was already an engineer at heart.

      A STEM education program at his high school helped unlock that passion, setting him on a path that would eventually lead to NASA’s White Sands Test Facility in Las Cruces, New Mexico.

      Angel Saenz poses in front of a composite overwrap pressure vessel outside of his office at White Sands Test Facility in Las Cruces, New Mexico. NASA/Anthony L. Quiterio The program – FIRST Robotics Competition – is run by global nonprofit, FIRST (For Inspiration and Recognition of Science and Technology). It was the brainchild of prolific inventor Dean Kamen, best known for creating the Segway.

      In what the organization calls “the ultimate sport for the mind,” teams of students spend six weeks working under adult mentors—and strict rules—to design, program, and build industrial-sized robots before facing off in a themed tournament. Teams earn points for accomplishing various engineering feats, launching, grappling, and climbing their way through the obstacles of a game that’s less football and more American Ninja Warrior.

      Competing during the 2013 and 2014 seasons with the White Sands-sponsored Deming Thundercats, Saenz said FIRST was a link between abstract mathematical ideas and real-world applications.

      “Before joining FIRST, equations were just something I was told to solve for a grade, but now I was applying them and seeing how they were actually useful,” he said.

      By turning education into an extracurricular activity as compelling as video games and as competitive as any varsity sport, FIRST completely reshaped Saenz’s approach to learning.

      “There are lots of other things kids can choose to do outside of school, but engineering was always that thing for me,” he said. “I associate it with being a fun activity, I see it more as a hobby.”

      That kind of energy—as any engineer knows—cannot be destroyed. Today Saenz channels it into his work, tackling challenges with White Sand’s Composite Pressure group where he tests and analyzes pressure vessel systems, enabling their safe use in space programs.

      “Having that foundation really helps ground me,” he said. “When I see a problem, I can look back and say, ‘That’s like what happened in FIRST Robotics and here’s how we solved it.’”

      Deming High School teacher and robotics mentor David Wertz recognized Saenz’s aptitude for engineering, even when Saenz could not yet see it in himself.

      “He wasn’t aware that we were using the engineering process as we built our robot,” Wertz said, “but he was always looking for ways to iterate and improve our designs.”

      Saenz credits those early hands-on experiences for giving him a head start.

      “It taught me a lot of concepts that weren’t supposed to be learned until college,” he said.

      Armed with that knowledge, Saenz graduated from New Mexico State University in 2019 with a dual degree in mechanical and aerospace engineering.

      Now 28 years old, Saenz is already an accomplished professional. He adds White Sands to an impressive resume that includes past experiences with Albuquerque-based global manufacturing company Jabil and Kirtland Airforce Base.

      Though only five months into the job, Saenz’s future at White Sands was set into motion more than a decade ago when he took a field trip to the site with Wertz in 2013.

      “The kind invitations to present at White Sands or to take a tour of the facility has inspired many of the students to pursue degrees in engineering and STEM,” Wertz said. “The partnership continues to allow students to see the opportunities that are available for them if they are willing to put in the work.”

      In a full-circle moment, Saenz and Mr. Wertz recently found themselves together at White Sands once again for the 2024 Environmental, Innovation, Safety, and Health Day event. This time not as student and teacher, but as industry colleagues in a reunion that could not have been better engineered.

      David Wertz and Angel Saenz attend White Sand’s Environmental, Innovation, Safety, and Health Day event on October 31, 2024. The 2025 FIRST Robotics World Competition will take place in Houston at the George R. Brown Convention Center from April 16 to April 19. NASA will host an exciting robotics exhibit at the event, showcasing the future of technology and spaceflight. As many as 60,000 energetic fans, students, and industry leaders are expected to attend. Read more about NASA’s involvement with FIRST Robotics here.
      View the full article
    • By NASA
      NASA/Josh Valcarcel From the mountains of Turin to the deserts of Arizona, a core element of Gateway, humanity’s first lunar space station, is now one step closer to the Moon. As seen in this April 1, 2025, photo, HALO (Habitation and Logistics Outpost), Gateway’s first pressurized module and one of its foundational elements, recently arrived in Gilbert, Arizona, following its fabrication by Thales Alenia Space in Turin, Italy. Now on U.S. soil, the module will undergo final outfitting by primary contractor Northrop Grumman before it’s integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center. Together, the two modules will launch to lunar orbit aboard a SpaceX Falcon Heavy rocket ahead of the Artemis IV mission.
      HALO will support astronauts visiting Gateway and function as a command and control hub for the space station. It will feature docking ports for spacecraft such as NASA’s Orion, logistics vehicles and lunar landers, and provide data handling, energy storage, power distribution, thermal regulation, and communications and tracking capabilities.
      HALO’s arrival marks a major milestone in the construction of Gateway, a cornerstone of NASA’s Artemis campaign to advance science and exploration on and around the Moon in preparation for the next giant leap: the first human missions to Mars.
      Image credit: NASA/Josh Valcarcel
      View the full article
    • By NASA
      NASA astronaut Christopher Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas.Credit: NASA NASA astronaut Chris Williams will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 74 crew member.
      Williams will launch aboard the Roscosmos Soyuz MS-28 spacecraft in November, accompanied by Roscosmos cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Williams will conduct scientific investigations and technology demonstrations that help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Williams graduated with the 23rd astronaut class in 2024. He began training for his first space station flight assignment immediately after completing initial astronaut candidate training.
      Williams was born in New York City, and considers Potomac, Maryland, his hometown. He holds a bachelor’s degree in Physics from Stanford University in California and a doctorate in Physics from the Massachusetts Institute of Technology in Cambridge, where his research focused on astrophysics. Williams completed Medical Physics Residency training at Harvard Medical School in Boston. He was working as a clinical physicist and researcher at the Brigham and Women’s Hospital in Boston when he was selected as an astronaut.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Apr 03, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
      NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
      Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
      There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
      Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
      The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
      Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
      “This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
      During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
      “Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
      How It Works
      Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
      The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
      Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
      “I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-045
      Share
      Details
      Last Updated Apr 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
      3 min read Discovery Alert: Four Little Planets, One Big Step
      The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
      Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
      The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
      Article 1 day ago 2 min read Hubble Spots a Chance Alignment
      The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      The first image from a new Italian Earth observation satellite mission was published today: a high-resolution image of a strip of the Italian peninsular showing the city of Rome at a resolution of 2.66 metres. This is three times higher than the resolution currently available for systematic acquisition over Italy.
      View the full article
  • Check out these Videos

×
×
  • Create New...