Jump to content

‘Are You Ready?’: DAF marks National Mentoring Month


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before. 
      The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below. 
      “Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study. 
      Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
      “Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
      Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
      This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun. 
      The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
      Irina Kitiashvili
      NASA Scientist
      “The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
      These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data. 
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit: ​
      https://www.nas.nasa.gov/sc24
      For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 21, 2024 Related Terms
      General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
      2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
      Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
      Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
      Article 24 hours ago Keep Exploring Discover More Topics From NASA
      Parker Solar Probe
      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
      Solar Storms and Flares
      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
      Solar System
      Track the Solar Cycle with Sunspots
      Participate in sunspot-counting activities using NASA telescopes or your own.
      View the full article
    • By Space Force
      The Department of the Air Force recorded significant audit achievements in Fiscal Year 2024, securing remediation's for all three of its audit roadmap targets, including two material weaknesses and one significant deficiency.
      View the full article
    • By Space Force
      The Department of the Air Force selected Schriever Space Force Base, Colorado, as the preferred and final location to host Space Delta 15.
      View the full article
    • By Space Force
      Under Secretary of the Air Force Melissa Dalton visited Vandenberg Space Force Base, Nov. 14, to meet with Guardians and Airmen and gain a better understanding of the base’s diverse missions.

      View the full article
    • By NASA
      When Ariel Vargas joined NASA in 2023, he knew he wanted to make an impact. Despite his relatively short tenure, he has earned the reputation of a Digital Transformer in his work as a Network and ICAM (Identity, Credential, and Access Management) Service Integrator at Johnson Space Center (JSC). No matter the task at hand, Ariel is motivated by measurable transformation. “I wanted to have my fingerprint on something no matter what it was, big or small. To be able to see an impact,” he says. “And a lot of the things that I’m doing, both within my role and within Digital Transformation, I can see really flourishing already.”  
      In his current role, Ariel oversees the integration and management of various network services to ensure compliance and smooth operation. This includes the modernization of NASA’s Voice over Internet Protocol (VoIP) to consolidate the agency’s telephone systems and enhance wireless communications. He is involved in rolling out wall-to-wall wireless and coverage improvements on campus at JSC. Ariel also spearheads efforts in streamlining communications across NASA by integrating new capabilities into familiar platforms like Microsoft Teams. With these projects in progress, he aims to foster a more flexible, collaborative work environment aligned with Digital Transformation’s goal of inclusive teaming.  
      Ariel appreciates the cultural side of Digital Transformation, particularly the challenges involved in pursuing constant innovation. He recognizes that growth “often requires a period of adjustment, especially for those encountering new tools or methods for the first time.” Ariel strives to ensure cohesive collaboration across teams and centers in establishing interoperable architectures, processes, and tools. His team measures the impact of their transformation efforts by several metrics, including increased network performance and adoption rates of new tools and technologies. For instance, the VoIP modernization initiative aims to remove 50% of telephones at NASA centers. Of the over 1300 users affected by the NASA-wide service shut-off of non-compliant phones at JSC, only 6% reported issues post-implementation. This reflected a positive and proactive collaboration with users on finding alternative solutions and embracing future innovations. 
      I really believe in embracing changes and innovation and driving impactful results, being able to see it.
      Ariel Vargas
      Network and ICAM (Identity, Credential, and Access Management) Service Integrator at Johnson Space Center (JSC)
      Lynn Vernon, JSC’s Digital Transformation lead and Chief Engineer for IT, notes Ariel’s ability to engage with partners, understand their mission needs, and identify innovative solutions to barriers. “Ariel looks at things from a new perspective and is willing to ask ‘why’ or ‘why not.’ Why do we do it this way? Why not try this? He is consistently willing to explore new technologies and capabilities to transform the way we work,” says Lynn. Ariel’s passion for continuous improvement and learning positions him as a natural leader within the Digital Transformation community. 
      Ariel took a unique path to NASA and sees his prior experiences as building blocks toward becoming the Digital Transformer he is today. Although his upbringing in Florida near Cape Canaveral sparked an early interest in space, Ariel initially pursued pre-medicine after high school before transitioning into the Army. After his service, he joined NASA as an intern through the Department of Defense’s SkillBridge program, which offers career assistance to transitioning military personnel. His ability to learn NASA’s culture and demonstrate mission value quickly led to a full-time, civil servant position. 
      Between his initial interest in medicine, his service in the Army, and his current focus on digital transformation and technology, Ariel sees a common theme of problem-solving. “You have to figure out what the problem is, and you have to be up to date with the newest, the latest and greatest, to help solve these problems.” Ariel followed this thread to complete a master’s degree in computer science and is currently pursuing a doctorate in instructional design and performance technology. Even outside his work at NASA, Ariel pursues pathways that further his capacity as a champion of Digital Transformation initiatives. 
      Looking to the future, Ariel is excited by the possibility of supporting NASA’s space missions through AI and data integration. He is motivated by the prospect of seeing his current work make a difference in the near-term future. “I really believe in embracing changes and innovation and driving impactful results, being able to see it,” he says. Given his accomplishments of the past year, Ariel is well on his way to realizing the future he envisions.  
      View the full article
  • Check out these Videos

×
×
  • Create New...