Jump to content

NASA, United Arab Emirates Announce Artemis Lunar Gateway Airlock


Recommended Posts

  • Publishers
Posted

gateway-airlock-photo.png?w=1280
NASA and the Mohammed Bin Rashid Space Centre (MBRSC) have entered into an agreement for MBRSC to provide the Crew and Science Airlock module for the Gateway Space Station. As part of the agreement, NASA will fly a United Arab Emirates astronaut to Gateway on a future Artemis mission. Pictured is an artist’s concept of Gateway (left) and an artist’s concept of a government reference airlock (right).
NASA

NASA and the Mohammed bin Rashid Space Centre (MBRSC) of the United Arab Emirates (UAE) announced Sunday plans for the space centre to provide an airlock for Gateway, humanity’s first space station that will orbit the Moon. The lunar space station will support NASA’s missions for long-term exploration of the Moon under Artemis for the benefit of all.

“As chair of the National Space Council, I have made it a priority to enhance international cooperation in space. Today’s announcement and partnership between the United States and United Arab Emirates advances this important work. By combining our resources, scientific capacity, and technical skill, the U.S. and UAE will further our collective vision for space and ensure it presents extraordinary opportunities for everyone here on Earth,” said Vice President Kamala Harris.

Under a new implementing arrangement expanding their human spaceflight collaboration with NASA through Gateway, MBRSC will provide Gateway’s Crew and Science Airlock module, as well as a UAE astronaut to fly to the lunar space station on a future Artemis mission.

“The United States and the United Arab Emirates are marking a historic moment in our nations’ collaboration in space, and the future of human space exploration,” said NASA Administrator Bill Nelson. “We are in a new era of exploration through Artemis – strengthened by the peaceful and international exploration of space. The UAE’s provision of the airlock to Gateway will allow astronauts to conduct groundbreaking science in deep space and prepare to one day send humanity to Mars.”

In addition to operating the airlock, MBRSC also will provide engineering support for the life of the lunar space station. The airlock will allow crew and science research transfers to and from the habitable environment of Gateway’s pressurized crew modules to the vacuum of space. These transfers will support broader science in the deep space environment, as well as Gateway maintenance.

Gateway will support sustained exploration and research in deep space, provide a home for astronauts to live and work, including a staging point for lunar surface missions, and an opportunity to conduct spacewalks while orbiting the Moon.

NASA’s Artemis program is the most diverse and broad coalition of nations in human exploration in deep space. In collaboration with the CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and now the MBRSC, NASA will return humans to the lunar surface for scientific discovery and chart a path for the first human missions to Mars.

This latest cooperation on Gateway builds on NASA’s and UAE’s previous human spaceflight collaboration. In 2019, Hazzaa Almansoori became the first Emirati to fly to space during a short mission to the International Space Station, in which he collaborated with NASA to perform experiments and educational outreach. A second Emirati astronaut, Sultan Al Neyadi, launched to the space station in 2023 on NASA’s SpaceX Crew-6 mission, where he participated in the floating laboratory’s scientific research that advances human knowledge and improves life on Earth. The UAE currently has two additional astronaut candidates in training at NASA’s Johnson Space Center in Houston. NASA has also worked with UAE on Mars research and human research and analog studies to support mutual exploration priorities.

In 2020, the United States and UAE were among the original signers of the Artemis Accords, which are a practical set of principles to guide space exploration cooperation among nations participating in NASA’s 21st century lunar exploration program.

Through Artemis, NASA will land the first woman and the first person of color on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone to send the first astronauts to Mars. 

https://www.nasa.gov/artemis

-end-

Vanessa Lloyd / Kathryn Hambleton
Headquarters, Washington
202-358-1600
vanessa.c.lloyd@nasa.gov / kathryn.hambleton@nasa.gov

Dylan Connell
Johnson Space Center, Houston
281-483-5111
dylan.b.connell@nasa.gov

Share

Details

Last Updated
Jan 07, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Humans are returning to the Moon—this time, to stay. Because our presence will be more permanent, NASA has selected a location that maximizes line-of-sight communication with Earth, solar visibility, and access to water ice: the Lunar South Pole (LSP). While the Sun is in the lunar sky more consistently at the poles, it never rises more than a few degrees above the horizon; in the target landing regions, the highest possible elevation is 7°. This presents a harsh lighting environment never experienced during the Apollo missions, or in fact, in any human spaceflight experience. The ambient lighting will severely affect the crews’ ability to see hazards and to perform simple work. This is because the human vision system, which despite having a high-dynamic range, cannot see well into bright light and cannot adapt quickly from bright to dark or vice versa. Functional vision is required to perform a variety of tasks, from simple tasks (e.g., walking, operating simple tools) through managing complex machines (e.g., lander elevator, rovers). Thus, the environment presents an engineering challenge to the Agency: one that must be widely understood before it can be effectively addressed.

       In past NASA missions and programs, design of lighting and functional vision support systems for extravehicular activity (EVA) or rover operations have been managed at the lowest program level. This worked well for Apollo and low Earth orbit because the Sun angle was managed by mission planning and astronaut self-positioning; helmet design alone addressed all vision challenges. The Artemis campaign presents new challenges to functional vision, because astronauts will be unable to avoid having the sun in their eyes much of the time they are on the lunar surface. This, combined with the need for artificial lighting in the extensive shadowing at the LSP, means that new functional vision support systems must be developed across projects and programs. The design of helmets, windows, and lighting systems must work in a complementary fashion, within and across programs, to achieve a system of lighting and vision support that enables crews to see into darkness while their eyes are light-adapted, in bright light while still dark-adapted, and protects their eyes from injury.
      Many of the findings of the assessment were focused on the lack of specific requirements to prevent functional vision impairment by the Sun’s brilliance (which is different from preventing eye injury), while enabling astronauts to see well enough to perform specific tasks. Specifically, tasks expected of astronauts at the LSP were not incorporated into system design requirements to enable system development that ensures functional vision in the expected lighting environment. Consequently, the spacesuit, for example, has flexibility requirements for allowing the astronauts to walk but not for ensuring they can see well enough to walk from brilliant Sun into a dark shadow and back without the risk of tripping or falling. Importantly, gaps were identified in allocation of requirements across programs to ensure that the role of the various programs is for each to understand functional vision. NESC recommendations were offered that made enabling functional vision in the harsh lighting environment a specific and new requirement for the system designers. The recommendations also included that lighting, window, and visor designs be integrated.
      The assessment team recommended that a wide variety of simulation techniques, physical and virtual, need to be developed, each with different and well-stated capabilities with respect to functional vision. Some would address the blinding effects of sunlight at the LSP (not easily achieved through virtual approaches) to evaluate performance of helmet shields and artificial lighting in the context of the environment and adaptation times. Other simulations would add terrain features to identify the threats in simple (e.g., walking, collection of samples) and complex (e.g., maintenance and operation of equipment) tasks. Since different facilities have different strengths, they also have different weaknesses. These strengths and limitations must be characterized to enable verification of technical solutions and crew training.
      NESC TB 2024- discipline-focus-hfView the full article
    • By NASA
      From left to right, Ambassador of the Principality of Liechtenstein to the United States of America Georg Sparber, Director of the Office for Communications of the Principality of Liechtenstein Dr. Rainer Schnepfleitner, NASA Deputy Administrator Pam Melroy, and Ambassador Extraordinary and Plenipotentiary to the Swiss Confederation and to the Principality of Liechtenstein Scott Miller, pose for a group photo during an Artemis Accords signing ceremony, Friday, Dec. 20, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Principality of Liechtenstein is the 52nd country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Credit: NASA/Keegan Barber Liechtenstein signed the Artemis Accords Friday during a ceremony hosted by NASA Deputy Administrator Pam Melroy at the agency’s headquarters in Washington, becoming the 52nd nation to commit to the responsible exploration of space for all humanity.
      “Today, as Liechtenstein signs the Artemis Accords, we take another step forward together, united by the promise of international cooperation and discovery,” said Melroy. “Liechtenstein’s commitment strengthens our vision, where space is explored with peace, transparency, and sustainability as guiding principles. With each new signatory, the Artemis Accords community adds fresh energy and capabilities to ensure the benefits of space reach the entire world.”
      Director of Liechtenstein’s Office for Communications Rainer Schnepfleitner signed the Artemis Accords on behalf of Liechtenstein. The Ambassador of the Principality of Liechtenstein to the United States Georg Sparber and U.S. Ambassador to the Swiss Confederation and the Principality of Liechtenstein Scott Miller also participated in the event.   
      “With its participation in the Artemis Accords, Liechtenstein looks forward to advancing space exploration among a strong group of like-minded countries committed to the peaceful use of space for the benefit of all humanity,” Sparber said.
      The United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords in 2020, identifying a set of principles promoting the beneficial use of space for humanity. Since then, signatories have expanded to represent a quarter of the world’s countries, with 19 countries signing in 2024.
      In addition to an increase in numbers, the Artemis Accords signatories, representing every region of the world, continued to build consensus this year and make significant progress in implementing the accords principles.
      NASA co-chaired the Artemis Accords Principals’ Meeting in October, which brought together 42 nations and furthered discussions on the safe and responsible use of space. They agreed on recommendations for non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration of space objects to advance implementation.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Dec 20, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Thales Alenia Space A maze of cables and sensors snakes through a major piece of Gateway, humanity’s first space station around the Moon, during a key testing phase earlier this year to ensure the lunar-orbiting science lab can withstand the harsh conditions of deep space.
      HALO (Habitation and Logistics Outpost) is one of four Gateway modules where international teams of astronauts will live, conduct science, and prepare for missions to the lunar South Pole region. Other elements will be provided by the European Space Agency, Japanese Aerospace Exploration Agency, and the Mohammed Bin Rashid Space Centre of the United Arab Emirates. The Canadian Space Agency is providing Gateway’s Canadarm3 advanced robotics system.
      HALO is provided by Northrop Grumman and their subcontractor, Thales Alenia Space. The module completed testing in Turin, Italy, before its expected arrival to the United States in 2025. Northrop Grumman will complete final outfitting of HALO and integrate it with Gateway’s Power and Propulsion Element for launch ahead of the Artemis IV mission on a SpaceX Falcon Heavy rocket.
      Image credit: Thales Alenia Space
      View the full article
    • By NASA
      NASA has taken a big step forward in how engineers will assemble and stack future SLS (Space Launch System) rockets for Artemis Moon missions inside the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida.
      The VAB’s High Bay 2 has been outfitted with new tooling to facilitate the vertical integration of the SLS core stage. That progress was on full display in mid-December when teams suspended the fully assembled core stage 225 feet in the air inside the high bay to complete vertical work before it is stacked on mobile launcher 1, allowing teams to continue solid rocket booster stacking simultaneously inside High Bay 3 for Artemis II.
      The fully assembled SLS (Space Launch System) core stage for the Artemis II test flight is suspended 225 feet in the air inside the newly renovated High Bay 2 at Kennedy’s Vehicle Assembly Building. The core stage was lifted to enable engineers to complete work before it is stacked on mobile launcher 1 with other rocket elements. With the move to High Bay 2, technicians now have 360-degree tip to tail access to the core stage, both internally and externally.NASA With the move to High Bay 2, technicians with NASA and Boeing now have 360-degree tip to tail access to the core stage, both internally and externally. Michigan-based supplier Futuramic Tool and Engineering led the design and build of the Core Stage Vertical Integration Center tool that will hold the core stage in a vertical position.
      “High Bay 2 tooling was originally scheduled to be complete for Artemis III. We had an opportunity to get it done earlier and that will put us in a good posture to complete work earlier than planned prior to moving the core stage for Artemis II into the full integrated stack over into in High Bay 3,” said Chad Bryant, deputy manager of the NASA SLS Stages Office. “This gives us an opportunity to go in and learn how to rotate, lift, and move the core stage into the high bay.”
      This move also doubles the footprint of useable space within the VAB, giving engineers access to both High Bay 2 and High Bay 3 simultaneously, while also freeing up space at NASA’s Michoud Assembly Facility in New Orleans to continue work on the individual elements for future SLS core stages.
      High Bay 2 has a long history of supporting NASA exploration programs: during Apollo, High Bay 2, one of four high bays inside the VAB, was used to stack the Saturn V rocket. During the Space Shuttle Program, the high bay was used for external tank checkout and storage and as an extra storage area for the shuttle.
      Under the new assembly model beginning with Artemis III, all the major structures for the SLS core stage will continue to be fully produced and manufactured at NASA Michoud. Upon completion of manufacturing and thermal protection system application, the engine section will be shipped to Kennedy for final outfitting.
      The 212-foot-tall SLS (Space Launch System) core stage for NASA Artemis II is seen being moved from a horizontal position to a vertical position in High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. With the move to High Bay 2, NASA and Boeing technicians now have 360-degree access to the core stage both internally and externally. (NASA) “Core stage 3 marks a significant change in the way we build core stages,” said Steve Wofford, manager of the SLS Stages Office. “The vertical capability in High Bay 2 allows us to perform parallel processing from the top to bottom of the stage. It’s a much more efficient way to build core stages. This new capability will streamline final production efforts, allowing our team to have 360-degree access to the stage, both internally and externally.”
      The fully assembled core stage for Artemis II arrived July 23, 2024, at Kennedy, where it remained horizontal inside the VAB transfer aisle until its recent lift into the newly outfitted high bay.
      Teams at NASA Michoud are outfitting the remaining core stage elements for Artemis III and preparing to horizontally join them. The four RS-25 engines for the Artemis III mission are complete at NASA’s Stennis Space Center in Bay St. Louis, Mississippi, and will be transported to NASA Kennedy in 2025. Major core stage and exploration upper stage structures are in work at NASA Michoud for Artemis IV and beyond.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
  • Check out these Videos

×
×
  • Create New...