Jump to content

NASA/JAXA XRISM Mission Reveals Its First Look at X-ray Cosmos


Recommended Posts

  • Publishers
Posted

4 min read

NASA/JAXA XRISM Mission Reveals Its First Look at X-ray Cosmos

The Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) observatory has released a first look at the unprecedented data it will collect when science operations begin later this year.

The satellite’s science team released a snapshot of a cluster of hundreds of galaxies and a spectrum of stellar wreckage in a neighboring galaxy, which gives scientists a detailed look at its chemical makeup.

“XRISM will provide the international science community with a new glimpse of the hidden X-ray sky,” said Richard Kelley, the U.S. principal investigator for XRISM at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’ll not only see X-ray images of these sources, but also study their compositions, motions, and physical states.”

resolve-n132d-spectrum.jpg?w=2048
XRISM’s Resolve instrument captured data from supernova remnant N132D in the Large Magellanic Cloud to create the most detailed X-ray spectrum of the object ever made. The spectrum reveals peaks associated with silicon, sulfur, argon, calcium, and iron. Inset at right is an image of N132D captured by XRISM’s Xtend instrument.
Credit: JAXA/NASA/XRISM Resolve and Xtend

XRISM (pronounced “crism”) is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). It launched on Sept. 6, 2023.

It’s designed to detect X-rays with energies up to 12,000 electron volts and will study the universe’s hottest regions, largest structures, and objects with the strongest gravity. For comparison, the energy of visible light is 2 to 3 electron volts.

The mission has two instruments, Resolve and Xtend, each at the focus of an X-ray Mirror Assembly designed and built at Goddard.

Resolve is a microcalorimeter spectrometer developed by NASA and JAXA. It operates at just a fraction of a degree above absolute zero inside a refrigerator-sized container of liquid helium. 

When an X-ray hits Resolve’s 6-by-6-pixel detector, it warms the device by an amount related to its energy. By measuring each individual X-ray’s energy, the instrument provides information previously unavailable about the source.

This graphic shows the Large Magellanic Cloud with an X-ray image of supernova remnant N132D as an inset.
Supernova remnant N132D lies in the central portion of the Large Magellanic Cloud, a dwarf galaxy about 160,000 light-years away. XRISM’s Xtend captured the remnant in X-rays, displayed in the inset. At its widest, N132D is about 75 light-years across. Although bright in X-rays, the stellar wreckage is almost invisible in the ground-based background view taken in optical light.
Credit: Inset, JAXA/NASA/XRISM Xtend; background, C. Smith, S. Points, the MCELS Team and NOIRLab/NSF/AURA

The mission team used Resolve to study N132D, a supernova remnant and one of the brightest X-ray sources in the Large Magellanic Cloud, a dwarf galaxy around 160,000 light-years away in the southern constellation Dorado. The expanding wreckage is estimated to be about 3,000 years old and was created when a star roughly 15 times the Sun’s mass ran out of fuel, collapsed, and exploded.

The Resolve spectrum shows peaks associated with silicon, sulfur, calcium, argon, and iron. This is the most detailed X-ray spectrum of the object ever obtained and demonstrates the incredible science the mission will do when regular operations begin later in 2024.

“These elements were forged in the original star and then blasted away when it exploded as a supernova,” said Brian Williams, NASA’s XRISM project scientist at Goddard. “Resolve will allow us to see the shapes of these lines in a way never possible before, letting us determine not only the abundances of the various elements present, but also their temperatures, densities, and directions of motion at unprecedented levels of precision. From there, we can piece together information about the original star and the explosion.”

XRISM’s second instrument, Xtend, is an X-ray imager developed by JAXA. It gives XRISM a large field of view, allowing it to observe an area about 60% larger than the average apparent size of the full moon.

This image shows an X-ray snapshot of galaxy cluster Abell 2319 on an optical background
XRISM’s Xtend instrument captured galaxy cluster Abell 2319 in X-rays, shown here in purple and outlined by a white border representing the extent of the detector. The background is a ground-based image showing the area in visible light.
Credit: JAXA/NASA/XRISM Xtend; background, DSS

Xtend captured an X-ray image of Abell 2319, a rich galaxy cluster about 770 million light-years away in the northern constellation Cygnus. It’s the fifth brightest X-ray cluster in the sky and is currently undergoing a major merger event.

The cluster is 3 million light-years across and highlights Xtend’s wide field of view.

“Even before the end of the commissioning process, Resolve is already exceeding our expectations,” said Lillian Reichenthal, NASA’s XRISM project manager at Goddard. “Our goal was to achieve a spectral resolution of 7 electron volts with the instrument, but now that it’s in orbit, we’re achieving 5. What that means is we’ll get even more detailed chemical maps with each spectrum XRISM captures.”

Resolve is performing exceptionally and already conducting exciting science despite an issue with the aperture door covering its detector. The door, designed to protect the detector before launch, has not opened as planned after several attempts. The door blocks lower-energy X-rays, effectively cutting the mission off at 1,700 electron volts compared to the planned 300. The XRISM team will continue to explore the anomaly and is investigating different approaches to opening the door. The Xtend instrument is unaffected.

NASA’s XRISM General Observer Facility, hosted at Goddard, is accepting proposals for observations from members of U.S. and Canadian institutions through Thursday, April 4. Cycle 1 of XRISM General Observer investigations will begin in the summer of 2024.

XRISM is a collaborative mission between JAXA and NASA, with participation by ESA. NASA’s contribution includes science participation from the Canadian Space Agency.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contacts:
Alise Fisher
NASA Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
claire.andreoli@nasa.gov

About the Author

Jeanette Kazmierczak

Jeanette Kazmierczak

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected Bastion Technologies Inc. of Houston to provide safety and mission assurance services for the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      The Safety and Mission Assurance II (SMAS II) award is a performance-based, indefinite-delivery/indefinite-quantity contract with a maximum potential value of $400 million. A phase-in period begins Monday, followed by a base ordering period of four years with options to extend services through March 2034.
      Under the contract, Bastion will provide services for a wide range of activities including system safety, reliability, maintainability, software assurance, quality engineering and assurance, independent assessment, institutional safety, and pressure systems.
      The work will support various spaceflight and science missions, research and development projects, hardware fabrication and testing, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, and Stennis Space Center in Bay St. Louis, Mississippi. Tasks also will be performed at NASA’s Kennedy Space Center in Florida, contractor facilities, and other sites supported by Marshall’s Safety and Mission Assurance Directorate.
      The SMAS II contract is a small business set-aside, which levels the playing field for qualified small businesses to compete for and win federal contracts.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Sep 15, 2025 LocationNASA Headquarters Related Terms
      Marshall Space Flight Center Kennedy Space Center Michoud Assembly Facility NASA Centers & Facilities Stennis Space Center View the full article
    • By European Space Agency
      Video: 00:01:43 An essential part of ESA’s Space Safety programme is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a true circular economy in space, minimising the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030.  
      ESA has now taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE, planned for launch in 2029. 
      RISE is a commercial in-orbit servicing mission that will demonstrate that it can safely rendezvous and dock to a geostationary client satellite, extending the life of geostationary satellites that need support with attitude and orbit control, but are otherwise in working order.  
      After verifying that it meets all the performance standards in a first demonstration, prime contractor, operator and co-founder D-Orbit will start commercial life extension services for geostationary satellites. 
      ESA’s RISE mission marks a promising step towards enhancing in-orbit services and technologies, such as refuelling, refurbishment and assembling – all essential elements for creating a circular economy in space.   
      Watch with subtitles
      View the full article
    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The first Proliferated Warfighter Space Architecture Tranche 1 Transport Layer space vehicles successfully launched from Vandenberg Space Force Base.

      View the full article
  • Check out these Videos

×
×
  • Create New...