Jump to content

So near, or so far?


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Sturgeon Moon rises behind a replica Saturn V rocket at the U.S. Space & Rocket Center in Huntsville, Alabama on Monday, August 19, 2024. Over 99% full when it rose, the moon was a rare combination of a blue moon and a supermoon, a phenomenon that will not repeat until 2027. NASA/Michael DeMocker A super blue Moon rises over Huntsville, Alabama, home to NASA’s Marshall Space Flight Center and the U.S. Space and Rocket Center, Aug. 19. Visible through Wednesday, Aug. 21, the full Moon is both a supermoon and a Blue Moon. As the Moon reaches its closest approach to Earth, the Moon looks larger in the night sky with supermoons becoming the biggest and brightest full Moons of the year. While not blue in color, the third full Moon in a season with four full Moons is called a “Blue Moon.”
      Huntsville is known as the “Rocket City” because of its proximity to NASA Marshall, which manages vital propulsion systems and hardware, engineering technologies, cutting-edge science, and launch vehicles for Apollo, shuttle, and Artemis. (NASA/Michael DeMocker)
      Explore More
      3 min read NASA Marshall Names Roger Baird Associate Director
      Article 19 hours ago 17 min read The Marshall Star for August 14, 2024
      Article 7 days ago 3 min read NASA Challenge Seeks ‘Cooler’ Solutions for Deep Space Exploration
      Article 1 week ago View the full article
    • By USH
      Mount Kailash is a mountain in Ngari Prefecture, Tibet Autonomous Region of China. It lies in the Kailash Range of the Transhimalaya, in the western part of the Tibetan Plateau. The peak of Mount Kailash is located at an elevation of 6,638 m, near the trijunction between China, India and Nepal. 

      In Tibetan Buddhism, Mount Kailash holds a special place as the Axis Mundi, or the center of the universe. Imagine it as the heart of everything, where heaven and earth meet. This sacred mountain isn't just a random peak; it's like the cosmic hub, connecting different realms together. 
      In the year 1999, an expedition of Russian Scientists led by Dr Ernst Muldashev claimed that Mount Kailash is too perfectly shaped for a natural mountain. They have discovered that the top of Mt. Kailash is actually a man-made vacuum pyramid. It is surrounded by more than 100 other small pyramids. According to preliminary estimates, the direct height of the pyramid complex is between 100 and 1,800 meters, while the Egyptian pyramid is only 146 meters 
      It is also believed to be the site of Lord Shiva, the god of destruction and rebirth as well as where the first human beings were created. 
      According to the legend Shiva has left a giant footprint on the summit  of the mountain. Despite extensive searches, no concrete evidence of  this footprint has ever been found. 
      While exploring Mount Kailash on Google Earth, I spotted a large, unusual anomaly near the summit. It resembles two hands, each with  four visible fingers, positioned opposite each other and seemingly carved into the rock. 
      Could these huge hands be a kind of a 'footprint' of Shiva that people have been searching for? 


      As for climbing up the summit, some daring mountaineers have attempted to do so, but with no luck. It also is said that who climb Mount Kailash age quickly. The time that human takes to age two weeks only take 12 hours in the mountain. Numerous hikers have detailed that they feel like their nails and hairs are developing rapidly within 12 hours. 
      Trekking all the way up to the peak of Mount Kailash is held to be a forbidden act among Hindus for the fear of trespassing the sanctity of the mountain and disturbing the divine energies residing there. 
      Even planes don't fly over Kailash as Mount Kailash is said to possess a mysterious magnetic anomaly that disrupts navigational instruments and disrupts compass readings. This phenomenon has puzzled scientists with no concrete explanation offered to date. 
      Coordinates: 31° 4'4.83"N  81°18'24.47"E
      Mount Kailash is still a mystery. The unconquered peak remains wrapped in myths, legends, and spiritual tales.View the full article
    • By NASA
      5 min read
      NASA: Life Signs Could Survive Near Surfaces of Enceladus and Europa
      Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have evidence of oceans beneath their ice crusts. A NASA experiment suggests that if these oceans support life, signatures of that life in the form of organic molecules (e.g. amino acids, nucleic acids, etc.) could survive just under the surface ice despite the harsh radiation on these worlds. If robotic landers are sent to these moons to look for life signs, they would not have to dig very deep to find amino acids that have survived being altered or destroyed by radiation.
      “Based on our experiments, the ‘safe’ sampling depth for amino acids on Europa is almost 8 inches (around 20 centimeters) at high latitudes of the trailing hemisphere (hemisphere opposite to the direction of Europa’s motion around Jupiter) in the area where the surface hasn’t been disturbed much by meteorite impacts,” said Alexander Pavlov of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of a paper on the research published July 18 in Astrobiology. “Subsurface sampling is not required for the detection of amino acids on Enceladus – these molecules will survive radiolysis (breakdown by radiation) at any location on the Enceladus surface less than a tenth of an inch (under a few millimeters) from the surface.”
      The frigid surfaces of these nearly airless moons are likely uninhabitable due to radiation from both high-speed particles trapped in their host planet’s magnetic fields and powerful events in deep space, such as exploding stars. However, both have oceans under their icy surfaces that are heated by tides from the gravitational pull of the host planet and neighboring moons. These subsurface oceans could harbor life if they have other necessities, such as an energy supply as well as elements and compounds used in biological molecules.
      Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. NASA/JPL/Space Science Institute The research team used amino acids in radiolysis experiments as possible representatives of biomolecules on icy moons. Amino acids can be created by life or by non-biological chemistry. However, finding certain kinds of amino acids on Europa or Enceladus would be a potential sign of life because they are used by terrestrial life as a component to build proteins. Proteins are essential to life as they are used to make enzymes which speed up or regulate chemical reactions and to make structures. Amino acids and other compounds from subsurface oceans could be brought to the surface by geyser activity or the slow churning motion of the ice crust.
      This view of Jupiter’s icy moon Europa was captured by JunoCam, the public engagement camera aboard NASA’s Juno spacecraft, during the mission’s close flyby on Sept. 29, 2022. The picture is a composite of JunoCam’s second, third, and fourth images taken during the flyby, as seen from the perspective of the fourth image. North is to the left. The images have a resolution of just over 0.5 to 2.5 miles per pixel (1 to 4 kilometers per pixel).
      As with our Moon and Earth, one side of Europa always faces Jupiter, and that is the side of Europa visible here. Europa’s surface is crisscrossed by fractures, ridges, and bands, which have erased terrain older than about 90 million years.
      Citizen scientist Kevin M. Gill processed the images to enhance the color and contrast.
      NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0 To evaluate the survival of amino acids on these worlds, the team mixed samples of amino acids with ice chilled to about minus 321 Fahrenheit (-196 Celsius) in sealed, airless vials and bombarded them with gamma-rays, a type of high-energy light, at various doses. Since the oceans might host microscopic life, they also tested the survival of amino acids in dead bacteria in ice. Finally, they tested samples of amino acids in ice mixed with silicate dust to consider the potential mixing of material from meteorites or the interior with surface ice.
      This image shows experiment samples loaded in the specially designed dewar which will be filled with liquid nitrogen shortly after and placed under gamma radiation. Notice that the flame-sealed test tubes are wrapped in cotton fabric to keep them together because test tubes become buoyant in liquid nitrogen and start floating around in the dewar, interfering with the proper radiation exposure. Candace Davison The experiments provided pivotal data to determine the rates at which amino acids break down, called radiolysis constants. With these, the team used the age of the ice surface and the radiation environment at Europa and Enceladus to calculate the drilling depth and locations where 10 percent of the amino acids would survive radiolytic destruction.
      Although experiments to test the survival of amino acids in ice have been done before, this is the first to use lower radiation doses that don’t completely break apart the amino acids, since just altering or degrading them is enough to make it impossible to determine if they are potential signs of life. This is also the first experiment using Europa/Enceladus conditions to evaluate the survival of these compounds in microorganisms and the first to test the survival of amino acids mixed with dust.
      The team found that amino acids degraded faster when mixed with dust but slower when coming from microorganisms.
      “Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life-detection measurements by Europa and Enceladus lander missions,” said Pavlov. “Our results indicate that the rates of potential organic biomolecules’ degradation in silica-rich regions on both Europa and Enceladus are higher than in pure ice and, thus, possible future missions to Europa and Enceladus should be cautious in sampling silica-rich locations on both icy moons.”
      A potential explanation for why amino acids survived longer in bacteria involves the ways ionizing radiation changes molecules — directly by breaking their chemical bonds or indirectly by creating reactive compounds nearby which then alter or break down the molecule of interest. It’s possible that bacterial cellular material protected amino acids from the reactive compounds produced by the radiation.
      The research was supported by NASA under award number 80GSFC21M0002, NASA’s Planetary Science Division Internal Scientist Funding Program through the Fundamental Laboratory Research work package at Goddard, and NASA Astrobiology NfoLD award 80NSSC18K1140.
      Share








      Details
      Last Updated Jul 18, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Astrobiology Enceladus Europa Goddard Space Flight Center The Search for Life The Solar System Explore More
      8 min read Europa’s Ocean
      Exploration Stories: Favorite Historical Moments – Robert Pappalardo Interview


      Article


      7 years ago
      2 min read Enceladus: What Lies Beneath?


      Article


      16 years ago
      8 min read Are Water Plumes Spraying from Europa? NASA’s Europa Clipper is on the Case
      Finding plumes at Europa is an exciting prospect, but scientists warn it’ll be tricky, even…


      Article


      3 years ago
      View the full article
    • By NASA
      2 min read
      Hubble Examines an Active Galaxy Near the Lion’s Heart
      This NASA/ESA Hubble Space Telescope features the elliptical galaxy Messier 105. ESA/Hubble & NASA, C. Sarazin et al. It might appear featureless and unexciting at first glance, but NASA/ESA Hubble Space Telescope observations of this elliptical galaxy — known as Messier 105 — show that the stars near the galaxy’s center are moving very rapidly. Astronomers have concluded that these stars are zooming around a supermassive black hole with an estimated mass of 200 million Suns! This black hole releases huge amounts of energy as it consumes matter falling into it, making the system an active galactic nucleus that causes the galaxy’s center to shine far brighter than its surroundings.
      Hubble also surprised astronomers by revealing a few young stars and clusters in Messier 105, a galaxy thought to be “dead” and incapable of star formation. Astronomers now think that Messier 105 forms roughly one Sun-like star every 10,000 years. Astronomers also spotted star-forming activity in a vast ring of hydrogen gas encircling both Messier 105 and its closest neighbor, the lenticular galaxy NGC 3384.
      Discovered in 1781, Messier 105 lies about 30 million light-years away in the constellation of Leo (The Lion) and is the brightest elliptical galaxy within the Leo I galaxy group.
      Text Credit: European Space Agency (ESA)

      Download the image

      Explore More

      Hubble Space Telescope


      Hubble’s Galaxies


      Hubble’s Messier Catalog: Messier 105

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 27, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Explore More With Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      What Did Hubble See on Your Birthday?



      Name That Nebula



      Hubble E-books


      View the full article
    • By NASA
      This image from NASA’s Lunar Reconnaissance Orbiter shows China’s Chang’e 6 lander in the Apollo basin on the far side of the Moon on June 7, 2024. The lander is the bright dot in the center of the image. The image is about 0.4 miles wide (650 meters); lunar north is up.Credit: NASA/Goddard/Arizona State University NASA’s LRO (Lunar Reconnaissance Orbiter) imaged China’s Chang’e 6 sample return spacecraft on the far side of the Moon on June 7. Chang’e 6 landed on June 1, and when LRO passed over the landing site almost a week later, it acquired an image showing the lander on the rim of an eroded, 55-yard-diameter (about 50 meters) crater. 
      The LRO Camera team computed the landing site coordinates as about 42 degrees south latitude, 206 degrees east longitude, at an elevation of about minus 3.27 miles (minus 5,256 meters).
      This before and after animation of LRO images shows the appearance of the Chang’e 6 lander. The increased brightness of the terrain surrounding the lander is due to disturbance from the lander’s engines and is similar to the blast zone seen around other lunar landers. The before image is from March 3, 2022, and the after image is from June 7, 2024.Credit: NASA/Goddard/Arizona State University The Chang’e 6 landing site is situated toward the southern edge of the Apollo basin (about 306 miles or 492 km in diameter, centered at 36.1 degrees south latitude, 208.3 degrees east longitude). Basaltic lava erupted south of Chaffee S crater about 3.1 billion years ago and flowed downhill to the west until it encountered a local topographic high, likely related to a fault. Several wrinkle ridges in this region have deformed and raised the mare surface. The landing site sits about halfway between two of these prominent ridges. This basaltic flow also overlaps a slightly older flow (about 3.3 billion years old), visible further west, but the younger flow is distinct because it has higher iron oxide and titanium dioxide abundances.
      A regional context map of the Chang’e 6 landing site. Color differences have been enhanced for clarity. The dark area is a basaltic mare deposit; bluer areas of the mare are higher-titanium flows. Contour lines marking 100-meter (about 328 feet) elevation intervals are overlaid to provide a sense of the topography. Image is about 118 miles (190 km) across. Credit: NASA/Goddard/Arizona State University LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University's LRO Camera website Media Contact:
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAGoddard@NASAMoon@NASASolarSystem @NASAGoddard@NASAMoon@NASASolarSystem Instagram logo @NASAGoddard@NASASolarSystem Share
      Details
      Last Updated Jun 14, 2024 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Earth's Moon Goddard Space Flight Center Planetary Science The Solar System Explore More
      1 min read NASA’s LRO Spots Japan’s Moon Lander 
      Article 5 months ago 2 min read NASA’s LRO Images Intuitive Machine’s Odysseus Lander
      Article 4 months ago 2 min read NASA’s LRO Finds Photo Op as It Zips Past SKorea’s Danuri Moon Orbiter
      Article 2 months ago View the full article
  • Check out these Videos

×
×
  • Create New...