Members Can Post Anonymously On This Site
JWST Project Scientist Wins Nobel Prize for Physics
-
Similar Topics
-
By Space Force
Natalia Serna, daughter of Space Launch Delta 30’s senior enlisted leader Chief Master Sgt. Jay Harris and Maria Tapia, wins U.S. Space Force's Military Child of the Year.
View the full article
-
By NASA
4 Min Read Career Spotlight: Scientist (Ages 14-18)
What does a scientist do?
Science is about exploring answers to questions. A scientist uses research and evidence to form hypotheses, test variables, and then share their findings.
NASA scientists conduct groundbreaking research to answer some of humanity’s most profound questions. Most scientists start as project scientists in their early careers. They spend a lot of time publishing their peer-reviewed literature and presenting scientific research. Senior-level scientists provide leadership in the NASA community, actively publish research group work, and take on management roles.
What are some of the different types of scientists that work at NASA?
Many types of scientists work at NASA to support its wide variety of missions. The agency’s scientists research the foods we send to space, the habitability of other planets, the weather in space, and so much more. Here are a few examples of types of scientists at NASA.
Planetary scientist: Discovers and studies the planetary objects in our solar system. These efforts shed light on the history of the solar system and the distribution of life within it.
Astrobiologist: Studies the origins of life, how life evolves, and where it might be found in the universe.
Astrophysicist: Studies the physical and chemical structures of stars, planets, and other natural objects found in space.
Biological/physical scientist: Studies how biological and physical processes work in challenging environments like space. This information helps NASA design longer human space missions and also benefits life on Earth.
Earth scientist: Uses observations and data from satellites and other sources to study Earth’s atmosphere, oceans, land cover, and land use.
Heliophysicist: Studies the Sun and its behaviors, such as magnetic fields, solar wind, and space weather. This knowledge helps us better understand and predict the Sun’s effects on Earth and in space.
How can I become a scientist?
Focus on building your scientific knowledge and skills. You can do this by taking challenging academic courses, participating in science fairs, and joining extracurricular activities that have a scientific focus. This is also a good time to research what types of sciences you’re most interested in, possible careers in those fields, and academic degrees required for those jobs.
Scientists typically need at least a four-year degree. Most pursue a master’s degree or even a doctorate (Ph.D.) to become experts in their field.
How can I start preparing today to become a scientist?
Interested in applying some science skills right away? NASA provides a variety of hands-on activities for a range of skill levels. The space agency also offers student challenges, competitions, and activities that provide authentic experience in a variety of science fields. For up-to-date opportunities, visit:
NASA STEM Opportunities and Activities for Students NASA Science Learning Opportunities NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
Advice from NASA scientists
“Take advantage of opportunities in different fields like attending summer classes, volunteering on the weekends, visiting museums, attending community lectures, and reading introductory books at the library. These are a few ways to expand your scope of possibility within the sciences, while simultaneously narrowing your focus in a field.” – Angela Garcia, exploration geologist
“The key to being a scientist is to love asking questions. If you are fascinated about how and why things work — you are already a scientist.”
Nicola Fox
NASA Associate Administrator, Science Mission Directorate
“One general skill that is often overlooked is the ability to write well and clearly. There’s a misconception that being a scientist means using big words and writing in ways that no one understands, when it’s actually the opposite. The ability to communicate your thoughts and ideas so that a child can understand is not easy, but it’s essential for good scientific writing.” – Matt Mickens, NASA horticulturist
Additional Resources
Careers in Science and Research
NASA Science Career Path Navigator
NASA Science Mission Directorate
People of NASA Science
Explore NASA+ Scientist Resources
Keep Exploring Discover More Topics From NASA
For Students Grades 9-12
NASA Internship Programs
NASA STEM Opportunities and Activities For Students
Careers
View the full article
-
By NASA
The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.
“Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
“This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
“I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
“This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
“Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
“The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
By Geoff Brown
Johns Hopkins University Applied Physics Laboratory
Share
Details
Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
Article
3 months ago
4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
Article
5 months ago
11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…
Article
3 years ago
View the full article
-
By NASA
Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 2 min read
The FireSense Project
Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer
Wind is a major factor in fire. It controls how fires evolve and pose threats to the safety of communities. While weather balloons have traditionally produced vertical soundings to define changes in atmospheric dynamics, their use is restricted during aircraft operations to combat active wildfires. New technologies are needed to fill this critical measurement gap. The Uninhabited Aerial System (UAS) fits the bill, providing localized forecasting to help predict fire behavior.
The NASA Earth Science Division FireSense project, together with agency, academic, and private partners, completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA UAS team conducted eight data-collection flights– see Figure. They partnered these launches with weather balloon launches.
Using this real-time data, MITRE Corporation tested high-resolution “Score-based Data Assimilation” meteorological models and the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Rapid Refresh (HRRR) operational atmospheric model against wind speed and temperature from local MesoNet weather stations. Environmental Systems Research Institute (ESRI) created comprehensive visualizations of flight paths, temperature, and wind.
The Montana campaign evaluated the impact of real-time data on model fire weather forecasts commonly used for operational decision making. The UAS sounding data was validated against weather ballon data. In addition, the campaign evaluated data validity from in-situ UAS soundings in a smoke impacted environment as well as assessed payload portability and user experience with the systems. The campaign served as a trial for interagency coordination between NOAA incident meteorologists and U.S. Forest Service (USFS) trained UAS pilots conducting data collection flights.
Figure. A composite image showing the NASA Alta X quadcopter taking off during one of eight flights conducted during the 2024 FireSense Uninhabited Aerial System technology demonstration in Missoula, MT. Image Credit: Milan Loiacono/NASA Steve Platnick
EOS Senior Project Scientist
Christine Mataya
FireSense Program Coordinator
Jacquelyn K. Shuman
FireSense Project Scientist
Michael Falkowski
FireSense Program Lead
Share
Details
Last Updated Mar 20, 2025 Related Terms
Earth Science View the full article
-
By NASA
9 min read
Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper
Peer-reviewed scientific journal articles are the bedrock of science. Each one represents the culmination of a substantial project, impartially checked for accuracy and relevance – a proud accomplishment for any science team.
The person who takes responsibility for writing the paper must inevitably and repeatedly write, edit, and rewrite its content as they receive comments and constructive criticism from colleagues, peers, and editors. And the process involves much more than merely re-writing the words. Implementing feedback and polishing the paper regularly involves reanalyzing data and conducting additional analyses as needed, over and over again. The person who successfully climbs this mountain of effort can then often earn the honor of being named the first author of a peer-reviewed scientific publication. To our delight, more and more of NASA’s citizen scientists have taken on this demanding challenge, and accomplished this incredible feat.
Michiharu Hyogo is one of these pioneers. His paper, “Unveiling the Infrared Excess of SIPS J2045-6332: Evidence for a Young Stellar Object with Potential Low-Mass Companion” (Hyogo et al. 2025) was recently accepted for publication in the journal Monthly Notices of the Royal Astronomical Society. He conceived of the idea for this paper, performed most of the research using of data from NASA’s retired Wide-field Infrared Survey Explorer (WISE) mission, and submitted it to the journal. We asked him some questions about his life and he shared with us some of the secrets to his success.
Q: Where do you live, Michi?
A: I have been living in Tokyo, Japan since the end of 2012. Before that, I lived outside Japan for a total of 21 years, in countries such as Canada, the USA, and Australia.
Q: Which NASA Citizen Science projects have you worked on?
A: I am currently working on three different NASA-sponsored projects: Disk Detective, Backyard Worlds: Planet 9, and Planet Patrol.
Q: What do you do when you’re not working on these projects?
A: Until March of last year, I worked as a part-time lecturer at a local university in Tokyo. At the moment, I am unemployed and looking for similar positions. My dream is to work at a community college in the USA, but so far, my job search has been unsuccessful. In the near future, I hope to teach while also working on projects like this one. This is my dream.
Q: How did you learn about NASA Citizen Science?
A: It’s a very long story. A few years after completing my master’s degree, around 2011, a friend from the University of Hawaii (where I did my bachelor’s degree) introduced me to one of the Zooniverse projects. Since it was so long ago, I can’t remember exactly which project it was—perhaps Galaxy Zoo or another one whose name escapes me.
I definitely worked on Planet Hunters, classifying all 150,000 light curves from (NASA’s) Kepler observatory. Around the time I completed my classifications for Planet Hunters, I came across Disk Detective as it was launching. A friend on Facebook shared information about it, stating that it was “NASA’s first sponsored citizen science project aimed at publishing scientific papers”.
At that time, I was unemployed and had plenty of free time, so I joined without giving much thought to the consequences. I never expected that this project would eventually lead me to write my own paper — it was far beyond anything I had imagined.
Q: What would you say you have gained from working on these NASA projects?A: Working on these NASA-sponsored projects has been an incredibly valuable experience for me in multiple ways. Scientifically, I have gained hands-on experience in analyzing astronomical data, identifying potential celestial objects, and contributing to real research efforts. Through projects like Disk Detective,Backyard Worlds: Planet 9, and Planet Patrol, I have learned how to systematically classify data, recognize patterns, and apply astrophysical concepts in a practical setting.
Beyond the technical skills, I have also gained a deeper understanding of how citizen science can contribute to professional research. Collaborating with experts and other volunteers has improved my ability to communicate scientific ideas and work within a research community.
Perhaps most importantly, these projects have given me a sense of purpose and the opportunity to contribute to cutting-edge discoveries. They have also led to unexpected opportunities, such as co-authoring scientific papers — something I never imagined when I first joined. Overall, these experiences have strengthened my passion for astronomy and my desire to continue contributing to the field.
Q: How did you make the discovery that you wrote about in your paper?
A: Well, the initial goal of this project was to discover circumstellar disks around brown dwarfs. The Disk Detective team assembled more than 1,600 promising candidates that might possess such disks. These objects were identified and submitted by volunteers from the same project, following the physical criteria outlined within it.
Among these candidates, I found an object with the largest infrared excess and the fourth-latest spectral type. This was the moment I first encountered the object and found it particularly interesting, prompting me to investigate it further.
Although we ultimately did not discover a disk around this object, we uncovered intriguing physical characteristics, such as its youth and the presence of a low-mass companion with a spectral type of L3 to L4.
Q: How did you feel when your paper was accepted for publication?
A: Thank you for asking this question—I truly appreciate it. I feel like the biggest milestone of my life has finally been achieved!
This is the first time I genuinely feel that I have made a positive impact on society. It feels like a miracle. Imagine if we had a time machine and I could go back five years to tell my past self this whole story. You know what my past self would say? “You’re crazy.”
Yes, I kept dreaming about this, and deep down, I was always striving toward this goal because it has been my purpose in life since childhood. I’m also proud that I accomplished something like this without being employed by a university or research institute. (Ironically, I wasn’t able to achieve something like this while I was in grad school.)
I’m not sure if there are similar examples in the history of science, but I’m quite certain this is a rare event.
Q: What would you say to other citizen scientists about the process of writing a paper?
A: Oh, there are several important things I need to share with them.
First, never conduct research entirely on your own. Reach out to experts in your field as much as possible. For example, in my case, I collaborated with brown dwarf experts from the Backyard Worlds: Planet 9 team. When I completed the first draft of my paper, I sent it to all my collaborators to get their feedback on its quality and to check if they had any comments on the content. It took some time, but I received a lot of helpful suggestions that ultimately improved the clarity and conciseness of my paper.
If this is your first time receiving extensive feedback, it might feel overwhelming. However, you should see it as a valuable opportunity—one that will lead you to stronger research results. I am truly grateful for the feedback I received. This process will almost certainly help you receive positive feedback from referees when you submit your own paper. That’s exactly what happened to me.
Second, do not assume that others will automatically understand your research for you. This seems to be a common challenge among many citizen scientists. First, you must have a clear understanding of your own research project. Then, it is crucial to communicate your progress clearly and concisely, without unnecessary details. If you have questions—especially when you are stuck — be specific.
For example, I frequently attend Zoom meetings for various projects, including Backyard Worlds: Planet 9 and Disk Detective. In every meeting, I give a brief recap of what I’ve been working on — every single time — to refresh the audience’s memory. This helps them stay engaged and remember my research. (Screen sharing is especially useful for this.) After the recap, I present my questions. This approach makes it much easier for others to understand where I am in my research and, ultimately, helps them provide potential solutions to the challenges I’m facing.
Lastly, use Artificial Intelligence (AI) as much as possible. For tasks like editing, proofreading, and debugging, AI tools can be incredibly helpful. I don’t mean to sound harsh, but I find it surprising that some people still do these things manually. In many cases, this can be a waste of time. I strongly believe we should rely on machines for tasks that we either don’t need to do ourselves or simply cannot do. This approach saves time and significantly improves productivity.
Q: Thank you for sharing all these useful tips! Is there anything else you would like to add?
A: I would like to sincerely thank all my collaborators for their patience and support throughout this journey. I know we have never met in person, and for some of you, this may not be a familiar way to communicate (it wasn’t for me at first either). If that’s the case, I completely understand. I truly appreciate your trust in me and in this entirely online mode of communication. Without your help, none of what I have achieved would have been possible.
I am now thinking about pushing myself to take on another set of research projects. My pursuit of astronomical research will not stop, and I hope you will continue to follow my journey. I will also do my best to support others along the way.
Share
Details
Last Updated Mar 18, 2025 Related Terms
Citizen Science Astrophysics Explore More
5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Article
1 day ago
5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide
Article
2 days ago
2 min read Hubble Sees a Spiral and a Star
Article
5 days ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.