Jump to content

NASA’s 2023 Space Station Achievements


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The International Space Station is a hub for scientific research and technology demonstration. Currently, in its third decade of human-tended operations, the orbiting lab is building on previous research to produce pivotal results while conducting cutting-edge science. Read highlights of some of the groundbreaking space station science conducted in 2023 that is benefiting humanity on Earth and preparing humans for journeys to the Moon and beyond.

Bringing Back the Benefits to People on Earth

A small white piece of cartilage is held by two metal spatulas just above the printing well of the BioFabrication Facility.
The first human knee meniscus successfully 3D bioprinted in orbit using the BioFabrication Facility.
Redwire

The first human knee meniscus was successfully bioprinted in orbit using the space station’s BioFabrication Facility. BFF-Meniscus-2 evaluates 3D printing knee cartilage tissue using bioinks and cells. Demonstration of this capability in space supports continued and expanded commercial use of the space station for fabricating tissues and organs for transplant on the ground.

On the left, NASA astronaut Jasmin Moghbeli wears a pink shirt while NASA astronaut Loral O’Hara is in a blue shirt to the right. Between them is a view of the Cold Atom Lab on the wall of the module. Both have their hair untied, floating above their heads.
NASA astronauts Jasmin Moghbeli and Loral O’Hara pose in front of the International Space Station’s Cold Atom Lab.
NASA

For the first time in space, scientists produced a quantum gas containing two types of atoms using station’s Cold Atom Laboratory. This new capability could allow researchers to study the quantum properties of individual atoms as well as quantum chemistry, which focuses on how different types of atoms interact and combine in a quantum state. This research could enable a wider range of Cold Atom Lab experiments, harnessing the facility to develop new space-based quantum technologies. Quantum tools are used in everything, from cell phones to medical devices, and could deepen our understanding of the fundamental laws of nature.

Monitoring Climate Change from Above

On Sept. 14, 2023, NASA announced that July 2023 was the hottest recorded month since 1880. The space station is helping monitor climate change by collecting data using multiple Earth-observing instruments mounted on its exterior.

At right, the Canadarm2 robotic arm maneuvers the Earth Surface Mineral Dust Source Investigation, or EMIT, after retrieving it from the trunk of the SpaceX Dragon. The station's main solar arrays are seen extending from the port truss segment in the center of the photo. Earth is in the lower background while the blackness of space covers the upper background.
The Canadarm2 robotic arm maneuvers NASA’s EMIT after retrieving it from the trunk of the SpaceX Dragon.
NASA

Since launching in 2022, NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) has detected more than surface minerals. The imaging spectrometer is now identifying point-source emissions of greenhouse gases with a proficiency that surprises even its designers. Detecting methane was not part of EMIT’s primary mission, but with more than 750 emissions sources now identified, the instrument has proven effective at spotting sources both big and small. This is an important factor in identifying “super-emitters” – sources that produce disproportionate shares of total emissions. Tracking human-caused emissions could offer a low-cost, rapid approach to reducing greenhouse gases.

The image shows the Evaporative Stress Index over the San Joaquin Valley on May 22, 2022, where many fields show high Evaporative Stress Index values that indicate low plant stress whereas low values indicate high plant stress.
Evaporative Stress Index over San Joaquin Valley, CA.
NASA

Models using NASA’s ECOSTRESS data found that photosynthesis in plants begins to fail at 116 degrees Fahrenheit (F) (46.7 degrees Celsius (C)). ECOSTRESS is helping to explore the implications of climate change within tropical rainforests. According to this study, average temperatures have increased 0.5 C per decade in some tropical regions, and temperature extremes are becoming more pronounced. It is unknown whether tropical vegetation temperatures could soon approach this threshold, but this result raises awareness of the need to mitigate climate change effects on rainforests, a primary producer of the world’s oxygen.

Studying for the Journey Beyond Low Earth Orbit

NASA now has the ability to recycle 98% of the water collected from the US segment on the space station – meeting the threshold necessary for water recovery on long-duration space exploration missions. Credit: NASA/ ScienceCasts

NASA has achieved 98% water recovery aboard the U.S. segment of the space station, a necessary milestone for space missions that venture to distant destinations. NASA uses the station to develop and test life support systems that can regenerate or recycle consumables such as food, air, and water. Ideally, life support systems need to recover close to 98% of the water that crews bring along at the start of a long journey. In 2023, the space station’s Environmental Control and Life Support System demonstrated this ability

NASA’s laser communications demonstration six-step roadmap. ILLUMA-T demonstrates two different data transfer speeds from low Earth orbit to the ground via a relay link. The links can be used to stream real-time data or for large bulk data transfers.
NASA’s Laser Communications Roadmap – proving the technology’s validity in a variety of environments.
NASA / Dave Ryan

NASA’s ILLUMA-T, a laser communications demonstration, completed its first link — a critical milestone for the agency’s first two-way laser relay system. Laser communications send and receive information at higher rates, providing spacecraft with the capability to send more data back to Earth in a single transmission. Testing operational laser communications in a variety of scenarios could refine the capability for future missions to the Moon and Mars.

NASA astronaut Frank Rubio harvests tomatoes for the Veg-05 experiment. Credit: NASA

NASA astronaut Frank Rubio completed a record-breaking science mission, spending 371 days in space. During his time in orbit, Rubio was the first astronaut to participate in a study examining how exercising with limited gym equipment affects the human body and is one of a handful of astronauts to help researchers test whether an enhanced diet can improve adaptation to life in space. Rubio’s contributions help researchers understand how spaceflight affects human physiology and psychology and prepare for long-duration missions.

UAE (United Arab Emirates) astronaut Sultan Alneyadi wears a navy sweater as he works in the Kibo laboratory module harvesting leaves from thale cress plants that are similar to cabbage and mustard. Alneyadi faces the camera with his hands still working on the Plant Habitat-03 space botany experiment.
UAE (United Arab Emirates) astronaut Sultan Alneyadi harvests leaves from thale cress plants for the Plant Habitat-03 experiment.
NASA

The completion of one of the first multi-generational plant studies aboard the space station could help researchers assess whether genetic adaptations in one generation of plants grown in space can transfer to the next. Plant Habitat-03 results could provide insight into how to grow repeated generations of crops to provide fresh food and other services on future space missions.

A sample of fabric burns inside Spacecraft Fire Experiment-IV (Saffire-IV). The sample is a composite fabric made of cotton and fiberglass and is 40 cm wide. The image appears green on the right because green LED lights are used to illuminate the sample during the burn. An orange flame sits top to bottom in the center of the image with a dark region between the orange and green areas. Bright specks on a black background to the left of the orange area show the smoldering cotton that remains on the fiberglass substrate after the flame passes
A sample of fabric burns inside an uncrewed Cygnus cargo spacecraft for the Saffire-IV experiment.
NASA

Saffire-VI (Spacecraft Fire Experiment-IV) marked the completion of a series of combustion experiments helping researchers understand the risks and behaviors of fire in space. Because flame-related experiments are difficult to conduct aboard an occupied spacecraft, Saffire (Spacecraft Fire Experiments) use the unmanned Cygnus resupply vehicle after it departs from the space station to test flammability at different oxygen levels and to demonstrate fire detection and monitoring capabilities.

Christine Giraldo
International Space Station Program Research Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Selects Two Teams to Advance Life Sciences Research in Space 
      NASA announced two awards Thursday to establish scientific consortia – multi-institutional coalitions to conduct ground-based studies that help address the agency’s goals of maintaining a sustained human presence in space. These consortia will focus on biological systems research in the areas of animal and human models, plants, and microbiology. When fully implemented, the awards for these consortia will total about $5 million. 
      Space biology efforts at NASA use the unique environment of space to conduct experiments impossible to do on Earth. Such research not only supports the health and welfare of astronauts, but results in breakthroughs on diseases such as cancer and neurodegenerative disorders to help protect humanity down on the ground.  
      The awards for the two consortia are for the following areas:  
      Studying space biosphere. The Biology in Space: Establishing Networks for DUrable & REsilient Systems consortium involves a collaborative effort between human/animal, plant, and microbial biologists to ensure an integrated view of the space flight biosphere by enhancing data acquisition, modeling, and testing. It will include participation of more than thirty scientists and professionals working together from at least three institutions. Led by Kristi Morgansen at the University of Washington in Seattle, Washington.    Converting human waste into materials for in-space biomanufacturing. The Integrative Anaerobic Digestion and Phototrophic Biosystem for Sustainable Space Habitats and Life Supports consortium will develop an anaerobic digestion process that converts human waste into organic acids and materials that can be used for downstream biomanufacturing applications in space. It will include eight scientists from six different institutions in three different states, including Delaware and Florida. The consortium is led by Yinjie Tang at Washington University in St. Louis, Missouri.    Proposals for these consortia were submitted in response to ROSES 2024 Program Element E.11 Consortium in Biological Sciences for a consortium with biological sciences expertise to carry out research investigations and conduct activities that address NASA’s established interests in space life sciences.  
      NASA’s Space Biology Program within the agency’s Biological and Physical Sciences division conducts research across a wide spectrum of biological organization and model systems to probe underlying mechanisms by which organisms acclimate to stressors encountered during space exploration (including microgravity, ionizing radiation, and elevated concentrations of carbon dioxide). This research informs how biological systems regulate and sustain growth, metabolism, reproduction, and development in space and how they repair damage and protect themselves from infection and disease. 
      For more information about NASA’s fundamental space-based research, visit https://science.nasa.gov/biological-physical
      Share








      Details
      Last Updated Oct 17, 2024 Contact NASA Science Editorial Team Location NASA Headquarters Related Terms
      Biological & Physical Sciences For Researchers Research Opportunities in Space and Earth Sciences (ROSES) Science & Research View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
      Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
      For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Science Launching on SpaceX's 31st Cargo Resupply Mission to the Space Station
    • By NASA
      NASA and its international partners are launching scientific investigations on SpaceX’s 31st commercial resupply services mission to the International Space Station including studies of solar wind, a radiation-tolerant moss, spacecraft materials, and cold welding in space. The company’s Dragon cargo spacecraft is scheduled to launch from NASA’s Kennedy Space Center in Florida.
      Read more about some of the research making the journey to the orbiting laboratory:
      Measuring solar wind
      The CODEX (COronal Diagnostic EXperiment) examines the solar wind, creating a globally comprehensive data set to help scientists validate theories for what heats the solar wind – which is a million degrees hotter than the Sun’s surface – and sends it streaming out at almost a million miles per hour.
      The investigation uses a coronagraph, an instrument that blocks out direct sunlight to reveal details in the outer atmosphere or corona. The instrument takes multiple daily measurements that determine the temperature and speed of electrons in the solar wind, along with the density information gathered by traditional coronagraphs. A diverse international team has been designing, building, and testing the instrument since 2019 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Multiple missions have studied the solar wind, and CODEX could add important pieces to this complex puzzle. When the solar wind reaches Earth, it triggers auroras at the poles and can generate space weather storms that sometimes disrupt satellite and land-based communications and power grids on the ground. Understanding the source of the solar wind could help improve space-weather forecasts and response.
      A worker prepares the CODEX (COronal Diagnostic EXperiment) instrument for launch.NASA Antarctic moss in space
      A radiation tolerance experiment, ARTEMOSS, uses a live Antarctic moss, Ceratodon purpureus, to study how some plants better tolerate exposure to radiation and to examine the physical and genetic response of biological systems to the combination of cosmic radiation and microgravity. Little research has been done on how these two factors together affect plant physiology and performance, and results could help identify biological systems suitable for use in bioregenerative life support systems on future missions.
      Mosses grow on every continent on Earth and have the highest radiation tolerance of any plant. Their small size, low maintenance, ability to absorb water from the air, and tolerance of harsh conditions make them suitable for spaceflight. NASA chose the Antarctic moss because that continent receives high levels of radiation from the Sun.
      The investigation also could identify genes involved in plant adaptation to spaceflight, which might be engineered to create strains tolerant of deep-space conditions. Plants and other biological systems able to withstand the extreme conditions of space also could provide food and other necessities in harsh environments on Earth.
      A Petri plate holding Antarctic moss colonies is prepared for launch at Brookhaven National Laboratory. SETI Institute Exposing materials to space
      The Euro Material Ageing investigation from ESA (European Space Agency) includes two experiments studying how certain materials age while exposed to space. The first experiment, developed by CNES (Centre National d’Etudes Spatiales), includes materials selected from 15 European entities through a competitive evaluation process that considered novelty, scientific merit, and value for the material science and technology communities. The second experiment looks at organic samples and their stability or degradation when exposed to ultraviolet radiation not filtered by Earth’s atmosphere. The exposed samples are recovered and returned to Earth.
      Predicting the behavior and lifespan of materials used in space can be difficult because facilities on the ground cannot simultaneously test for all aspects of the space environment. These limitations also apply to testing organic compounds and minerals that are relevant for studying comets, asteroids, the surface of Mars, and the atmospheres of planets and moons. Results could support better design for spacecraft and satellites, including improved thermal control, and the development of sensors for research and industrial applications.
      Preparation of one of the Euro Material Ageing’s experiments for launch.Centre National d’Etudes Spatiales Repairing spacecraft from the inside
      Nanolab Astrobeat investigates using cold welding to repair perforations in the outer shell or hull of a spacecraft from the inside. Less force is needed to fuse metallic materials in space than on Earth, and cold welding could be an effective way to repair spacecraft.
      Some micrometeoroids and space debris traveling at high velocities could perforate the outer surfaces of spacecraft, possibly jeopardizing mission success or crew safety. The ability to repair impact damage from inside a spacecraft may be more efficient and safer for crew members. Results also could improve applications of cold welding on Earth as well.
      The investigation also involves a collaboration with cellist Tina Guo with support from New York University Abu Dhabi to store musical compositions on the Astrobeat computer. Investigators planned to stream this “Music from Space” from the space station to the International Astronautical Congress in Milan and to Abu Dhabi after the launch.
      The Nanolab Astrobeat computer during assembly prior to launch.Malta College of Arts, Science & Technology/ Leonardo Barilaro Download high-resolution photos and videos of the research mentioned in this article. 
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Station Benefits for Humanity
      Latest News from Space Station Research
      International Space Station
      View the full article
    • By European Space Agency
      Image: VAST focus of future space frequencies View the full article
  • Check out these Videos

×
×
  • Create New...