Jump to content

USSF accepting proposals for third research opportunity under the USSF University Consortium


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Wearable Tech for Space Station Research
      A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
      Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
      Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
      Warm to the core
      Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
      A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
      Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
      NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
      Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
      NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
      These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
      (Not) waiting to exhale
      Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
      One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
      EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
      ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
      ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
      Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
      The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Space Station Technology Demonstration
      Space Station Research and Technology
      Station Science 101: Human Research
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA provides a variety of pathways for those outside the agency to contribute to authentic and meaningful research. Whether you’re a student pursuing a degree in STEM (science, technology, engineering, or mathematics), an educator looking for new ways to engage your classroom, or a citizen scientist enthusiastic about sharing your observations, there’s a wide array of opportunities to get involved in NASA research.
      Citizen scientists around the world participate in environmental observation and measurement efforts through GLOBE.NASA Everybody
      People from all around the world can make contributions to NASA research through citizen science projects and other opportunities available to the public.
      Share your observations and take measurements in your part of the world through GLOBE (Global Learning and Observations to Benefit the Environment), an international science and education initiative that engages students, teachers, and the public in collecting and analyzing environmental data. Do you have a relevant idea for human health science research that could be performed on the future Gateway lunar space station? Follow these steps to share your idea for consideration. The Prizes, Challenges, and Crowdsourcing program through NASA’s Space Technology Mission Directorate invites citizen scientists to develop innovations in recycling material waste on deep space missions, develop aids/devices for navigating on the lunar surface during future Artemis missions, and more. Do you have the “right stuff” to participate in a simulated deep space mission? NASA’s HERA (the Human Exploration Research Analog) is seeking healthy subjects to participate in 45-day simulations to study the physiological and psychological effects of isolation and confinement on humans to help prepare for future missions to the Moon and Mars. Visit the NASA Citizen Science webpage for more opportunities to discover the secrets of the universe, search for life elsewhere, and improve life on Earth and in space. This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Middle and High School Students
      Students can gain valuable experience while making a difference in the future of aeronautics and exploration.
      Rising high school juniors and seniors are eligible to apply for the four-week Gene Lab for High School Students training program sponsored by NASA’s Ames Research Center in Silicon Valley, California. The program focuses on collecting and analyzing complex biological data such as genetic codes, and computational biology. Through the annual TechRise Student Challenge offered by NASA’s Space Technology Mission Directorate, U.S. students in grades 6 to 12 form teams and design an experiment to fly on a suborbital flight platform such as a high-altitude balloon. Interested in aviation? The Dream With Us Design Challenge through NASA’s Aeronautics Research Mission Directorate invites students in grades 6 to 12 to envision new innovations that will improve the safety, sustainability, and accessibility of aviation systems and technology. Through NASA internships, U.S. students ages 16 and up can boost their research experience and contribute to NASA’s work with the guidance of an agency mentor. This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Undergraduate and Graduate Students
      NASA offers a variety of research opportunities for college students preparing to launch their own exciting careers in STEM.
      NASA’s Established Program to Stimulate Competitive Research (EPSCoR) grants competitive awards to enable college and university students within specific U.S. jurisdictions to participate in cutting-edge research projects that address NASA’s challenges and needs. The National Space Grant College and Fellowship Project (Space Grant), is a national network of colleges and universities comprising a total of 52 consortia across the U.S. These consortia fund several research opportunities for students attending member colleges and universities. Look up your state’s Space Grant consortium website to discover available opportunities. NASA internships are available in a wide range of opportunities for undergraduate and graduate students, enabling meaningful contributions to NASA’s missions as well as authentic experience as a part of the agency’s world-class workforce. Through the University Student Research Challenge, students are invited to propose their ideas describing innovative new approaches to tackling one of six major research areas as outlined by NASA’s Aeronautics Research Mission Directorate. Students can take part in valuable studies of the ever-changing Earth system through NASA’s Earth Science Division’s Early Career Research (ECR) program. ECR includes the eight-week Student Airborne Research Program, the Climate Change Research Initiative, and more. College students at Minority Serving Institutions can contribute to the agency’s exploration goals through many opportunities offered by NASA’s Minority University Research and Education Project (MUREP). Educators of grades K-8 take part in a workshop hosted by NASA’s Next Gen STEM.NASA Educators
      NASA provides opportunities for educators to participate in authentic aerospace research, as well as to engage their students in research in the classroom.
      Space Grant offers a variety of opportunities for educators, from curriculum enhancement and faculty development to grants enabling teachers to bring NASA research into the classroom. Look up your state’s Space Grant consortium website to discover available opportunities. NASA welcomes interns with professional teaching experience to help foster the education and curiosity of students who will shape the future workforce. Visit NASA Internships to learn more and find current opportunities. Through NASA’s Climate Change Research Initiative, part of the agency’s Earth Science Division’s Early Career Research Program, high school STEM educators can join a research team led by NASA scientists to focus on a research area related to climate change. There’s More to Explore
      Explore available NASA STEM learning experiences, such as internship roles, student competitions, or engagements with NASA researchers, through NASA’s STEM Gateway platform. Visit NASA’s Learning Resources webpage for the latest news and resources from the agency’s Office of STEM Engagement.
      Keep Exploring Discover More STEM Topics From NASA
      NASA STEM Engagement Funding Opportunities
      For Colleges and Universities
      About STEM Engagement at NASA
      NASA EXPRESS Newsletter Sign-up
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Candeska Cikana Community College uses selective laser sintering, a type of 3D-printing in which heat and pressure form specific structures using layers of powdered material. Shown here, a student works to remove excess material, in this case a powdered form of nylon with carbon fibers, to reveal a prototype of the “Mapi Hapa,” or “sky shoe.” Candeska Cikana Community College Human exploration on the lunar surface is no small feat. It requires technologists and innovators from all walks of life to tackle many challenges, including feet. 
      From designing astronaut boots, addressing hazardous Moon dust, and researching new ways to land on Mars, NASA is funding valuable research through M-STAR (Minority University Research and Education Project’s (MUREP) Space Technology Artemis Research). The M-STAR program provides opportunities for students and faculty at Minority Serving Institutions to participate in space technology development through capacity building and research grants. With more than $11.5 million awarded since 2020, M-STAR aims to ensure NASA isn’t leaving any potential solution behind. 
      Best Foot Forward 
      Nicholas Bitner from Candeska Cikana Community College, left, and Jesse Rhoades from the University of North Dakota (UND), right, are pictured in UND’s BiPed lab, where their students test and capture motion data for the Mapi Hapa. Walter Criswell, UND Today Supportive boots are required for astronauts who will perform long duration Artemis missions on the Moon. With astronaut foot health in mind, students and faculty of North Dakota’s Candeska Cikana Community College in Fort Totten and the University of North Dakota in Grand Forks are designing a solution for extravehicular activity Moon boots. The project, called Mapi Hapa, proposes a 3D printed device that helps astronauts achieve the range of motion that takes place in the ankle when you draw your toe back towards the shin. 
      Candeska Cikana Community College is a tribal college that serves the Spirit Lake Nation, including the Dakota, Lakota, Sisseton, Wahpeton, and Yanktonai peoples.  
      Nicholas Bitner, an instructor at Candeska Cikana and graduate student at the University of North Dakota, notes the unique skills that tribal students possess. “Their perspective, which is unlike that of any other student body, thrives on building with their hands and taking time to make decisions.” 
      Bitner also attributes many opportunities and successes of their program to M-STAR and its partnership which exemplifies the dire importance of consistent funding. 
      “Given the relationships, we have been able to expand our capabilities and our lab, but it has also given us funding. We were able to hire all our students in the engineering department as lab technicians. So, they get paid to do the research that they are a part of, and not only do they have that psychological ownership, but they also have a good paying job that looks nice on their resumes.”  
      In addition to addressing astronaut foot health, M-STAR funding is helping develop solutions to combat lunar regolith, or Moon dust, which can damage landers, spacesuits, and human lungs, if inhaled. 
      Lunar Dust Development 
      With M-STAR, New Mexico State University in Las Cruces developed affordable, reliable lunar regolith simulants to help test lunar surface technologies. The team also designed testing facilities that mimic environmental conditions on the Moon.   
      New Mexico State has already started sharing their simulants, including with a fellow M-STAR awardee. An M-STAR project selected in 2023 from the University of Maryland Eastern Shore in Princess Anne uses the simulants to help test their experience in smart agriculture to test applications for crop production on the Moon. 
      University of Maryland, Eastern Shore explores the possibility of growing crops in lunar regolith by mixing varying proportions of lunar regolith simulant, horse manure, and potting soil. The lunar regolith simulant was provided by fellow M-STAR awardee at New Mexico State University in in Las Cruces.Stephanie Yeldell/NASA Douglas Cortez, associate professor in civil engineering at New Mexico State, believes different perspectives are essential to maximizing solutions.  
      “There are hundreds of people working at Minority Serving Institutions that are used to looking at the world in a completely different way,” said Cortez. “When they start looking at the same problem and parameters, they come up with very different solutions.” 
      As we look to sustainable presence on the Moon, NASA also has its sights set on Mars and M-STAR is helping develop technologies to inform crewed Martian exploration.  
      Stick the Landing 
      San Diego State University in California was awarded funding for research on Mars entry, descent, and landing technologies. The team aims to achieve optimal trajectory by developing onboard algorithms that guide vehicles to descent autonomously. 
      The M-STAR research opportunities have been invaluable to students like Chris Davami and his teammates working to develop improved methods to land on Mars.  
      Christopher Davami, who supported San Diego State University’s 2021 M-STAR project, is pictured here at NASA’s Langley Research Center, where he was selected for internships supporting research in aeroelasticity, atmospheric flight, and entry systems research.NASA “I would definitely not have been able to have these opportunities with NASA if it weren’t for M-STAR,” said Davami. “M-STAR helped pay for my education, which helped me save a lot in student loans. I probably wouldn’t be going to graduate school right now if I did not have this opportunity. This program enabled me to keep pursuing my research and continue doing what I love.” 
      Following his contributions to the M-STAR-funded project, Davami was awarded a NASA Space Technology Graduate Research Opportunity in 2023 on his work in autonomous end-to-end trajectory planning and guidance constrained entry and precision power decent.  
      Through efforts like M-STAR, NASA aims to seed the future workforce and prepare colleges and universities to win other NASA research opportunities. When it comes to the advancement of space technology, people of different backgrounds and skillsets are needed to achieve what was once known as impossible. Not only can the diversification of ideas spark fundamental innovations in space, but it can also help students apply these technological advancements to solving problems here on Earth. 
      To learn more about M-STAR visit: 
      https://go.nasa.gov/442k76s
      by: Gabrielle Thaw, NASA’s Space Technology Mission Directorate 
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Student & STEM Opportunities
      NASA Grants to Strengthen Diversity in Engineering, STEM Fields
      Get Involved
      Share
      Details
      Last Updated Nov 05, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Technology View the full article
    • By NASA
      NASA NASA pilot Joe Walker sits in the pilot’s platform of the Lunar Landing Research Vehicle (LLRV) number 1 on Oct. 30, 1964. The LLRV and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the Moon’s surface.
      The LLRVs, humorously referred to as flying bedsteads, were used by NASA’s Flight Research Center, now NASA’s Armstrong Flight Research Center in California, to study and analyze piloting techniques needed to fly and land the Apollo lunar module in the moon’s airless environment.
      Learn more about the LLRV’s first flight.
      Image credit: NASA
      View the full article
    • By NASA
      President John F. Kennedy’s national commitment to land a man on the Moon and return him safely to the Earth before the end of the decade posed multiple challenges, among them how to train astronauts to land on the Moon, a place with no atmosphere and one-sixth the gravity on Earth. The Lunar Landing Research Vehicle (LLRV) and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the lunar surface. The ungainly aircraft made its first flight on Oct. 30, 1964, at NASA’s Flight Research Center (FRC), now NASA’s Armstrong Flight Research Center (AFRC) in California. The Apollo astronauts who completed landings on the Moon attributed their successes largely to training in these vehicles.

      The first Lunar Landing Research Vehicle silhouetted against the rising sun on the dry lakebed at Edwards Air Force Base in California’s Mojave Desert.
      In December 1961, NASA Headquarters in Washington, D.C., received an unsolicited proposal from Bell Aerosystems in Buffalo, New York, for a design of a flying simulator to train astronauts on landing a spacecraft on the Moon. Bell’s approach, using their design merged with concepts developed at NASA’s FRC, won approval and the space agency funded the design and construction of two Lunar Landing Research Vehicles (LLRV). At the time of the proposal, NASA had not yet chosen the method for getting to and landing on the Moon, but once NASA decided on Lunar Orbit Rendezvous in July 1962, the Lunar Module’s (LM) flying characteristics matched Bell’s proposed design closely enough that the LLRV served as an excellent trainer. 

      Two views of the first Lunar Landing Research Vehicle shortly after its arrival and prior to assembly at the Flight Research Center, now NASA’s Armstrong Flight Research Center, in California.
      Bell Aerosystems delivered the LLRV-1 to FRC on April 8, 1964, where it made history as the first pure fly-by-wire aircraft to fly in Earth’s atmosphere. Its design relied exclusively on an interface with three analog computers to convert the pilot’s movements to signals transmitted by wire and to execute his commands. The open-framed LLRV used a downward pointing turbofan engine to counteract five-sixths of the vehicle’s weight to simulate lunar gravity, two rockets provided thrust for the descent and horizontal translation, and 16 LM-like thrusters provided three-axis attitude control. The astronauts could thus simulate maneuvering and landing on the lunar surface while still on Earth. The LLRV pilot could use an aircraft-style ejection seat to escape from the vehicle in case of loss of control.

      Left: The Lunar Landing Research Vehicle-1 (LLRV-1) during an engine test at NASA’s Flight Research Center (FRC), now NASA’s Armstrong Fight Research Center, in California’s Mojave Desert. Right: NASA chief test pilot Joseph “Joe” A. Walker, left, demonstrates the features of LLRV-1 to President Lyndon B. Johnson during his visit to FRC.
      Engineers conducted numerous tests to prepare the LLRV for its first flight. During one of the engine tests, the thrust generated was higher than anticipated, lifting crew chief Raymond White and the LLRV about a foot off the ground before White could shut off the engines. On June 19, during an official visit to FRC, President Lyndon B. Johnson inspected the LLRV featured on a static display. The Secret Service would not allow the President to sit in the LLRV’s cockpit out of an overabundance of caution since the pyrotechnics were installed, but not yet armed, in the ejection seat. Following a Preflight Readiness Review held Aug. 13 and 14, managers cleared the LLRV for its first flight.

      Left: NASA chief test pilot Joseph “Joe” A. Walker during the first flight of the Lunar Landing Research Vehicle (LLRV). Right: Walker shortly after the first LLRV flight.
      In the early morning of Oct. 30, 1964, FRC chief pilot Joseph “Joe” A. Walker arrived at Edwards Air Force Base’s (AFB) South Base to attempt the first flight of the LLRV. Walker, a winner of both the Collier Trophy and the Harmon International Trophy, had flown nearly all experimental aircraft at Edwards including 25 flights in the X-15 rocket plane. On two of his X-15 flights, Walker earned astronaut wings by flying higher than 62 miles, the unofficial boundary between the Earth’s atmosphere and space. After strapping into the LLRV’s ejection seat, Walker ran through the preflight checklist before advancing the throttle to begin the first flight. The vehicle rose 10 feet in the air, Walker performed a few small maneuvers and then made a soft landing after having flown for 56 seconds. He lifted off again, performed some more maneuvers, and landed again after another 56 seconds. On his third flight, the vehicle’s electronics shifted into backup mode and he landed the craft after only 29 seconds. Walker seemed satisfied with how the LLRV handled on its first flights.

      Left: Lunar Landing Research Vehicle-2 (LLRV-2) during one of its six flights at the Flight Research Center, now NASA’s Armstrong Flight Research Center, in California in January 1967. Right: NASA astronaut Neil A. Armstrong with LLRV-1 at Ellington Air Force Base in March 1967.
      Walker took LLRV-1 aloft again on Nov. 16 and eventually completed 35 test flights with the vehicle. Test pilots Donald “Don” L. Mallick, who completed the first simulated lunar landing profile flight during the LLRV’s 35th flight on Sept. 8, 1965, and Emil E. “Jack” Kluever, who made his first flight on Dec. 13, 1965, joined Walker to test the unique aircraft. Joseph S. “Joe” Algranti and Harold E. “Bud” Ream, pilots at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center (JSC) in Houston, travelled to FRC to begin training flights with the LLRV in August 1966. Workers at FRC assembled the second vehicle, LLRV-2, during the latter half of 1966. In December 1966, after 198 flights workers transferred LLRV-1 to Ellington AFB near MSC for the convenience of astronaut training, and LLRV-2 followed in January 1967 after completing six test flights at FRC. The second LLRV made no further flights, partly because the three Lunar Landing Training Vehicles (LLTVs), more advanced models that better simulated the LM’s flying characteristics, began to arrive at Ellington in October 1967. Neil A. Armstrong completed the first astronaut flights aboard LLRV-1 on Mar. 23, 1967, and flew 21 flights before ejecting from the vehicle on May 6, 1968, seconds before it crashed. He later completed his lunar landing certification flights using LLTV-2 in June 1969, one month before peforming the actual feat on the Moon.

      Left: Apollo 11 Commander Neil A. Armstrong prepares to fly a lunar landing profile in Lunar Landing Training Vehicle-2 (LLTV-2) in June 1969. Middle: Apollo 12 Commander Charles “Pete” Conrad prepares to fly LLTV-2 in July 1969. Right: Apollo 14 Commander Alan B. Shepard flies LLTV-3 in December 1970.
      All Apollo Moon landing mission commanders and their backups completed their lunar landing certifications using the LLTV, and all the commanders attributed their successful landings to having trained in the LLTV. Apollo 8 astronaut William A. Anders, who along with Armstrong completed some of the early LLRV test flights, called the training vehicle “a much unsung hero of the Apollo program.” During the flight readiness review in January 1970 to clear LLTV-3 for astronaut flights, Apollo 11 Commander Armstrong and Apollo 12 Commander Charles “Pete” Conrad, who had by then each completed manual landings on the Moon, spoke positively of the LLTV’s role in their training. Armstrong’s overall impression of the LLTV: “All the pilots … thought it was an extremely important part of their preparation for the lunar landing attempt,” adding “It was a contrary machine, and a risky machine, but a very useful one.” Conrad emphasized that were he “to go back to the Moon again on another flight, I personally would want to fly the LLTV again as close to flight time as possible.” During the Apollo 12 technical debriefs, Conrad stated the “the LLTV is an excellent training vehicle for the final phases. I think it’s almost essential. I feel it really gave me the confidence that I needed.” During the postflight debriefs, Apollo 14 Commander Alan B. Shepard stated that he “did feel that the LLTV contributed to my overall ability to fly the LM during the landing.”

      Left: Apollo 15 Commander David R. Scott flies Lunar Landing Training Vehicle-3 (LLTV-3) in June 1971. Middle: Apollo 16 Commander John W. Young prepares to fly LLTV-3 in March 1972. Right: Apollo 17 Commander Eugene A. Cernan prepares for a flight aboard LLTV-3 in October 1972.
      David R. Scott, Apollo 15 commander, stated in the final mission report that “the combination of visual simulations and LLTV flying provided excellent training for the actual lunar landing. Comfort and confidence existed throughout this phase.” In the Apollo 15 postflight debrief, Scott stated that he “felt very comfortable flying the vehicle (LM) manually, because of the training in the LLTV, and there was no question in my mind that I could put it down where I wanted to. I guess I can’t say enough about that training. I think the LLTV is an excellent simulation of the vehicle.” Apollo 16 Commander John W. Young offered perhaps the greatest praise for the vehicle just moments after landing on the lunar surface: “Just like flying the LLTV. Piece of cake.” Young reiterated during the postflight debriefs that “from 200 feet on down, I never looked in the cockpit. It was just like flying the LLTV.” Apollo 17 Commander Eugene A. Cernan stated in the postflight debrief that “the most significant part of the final phases from 500 feet down, … was that it was extremely comfortable flying the bird. I contribute (sic) that primarily to the LLTV flying operations.”

      Left: Workers move Lunar Landing Research Vehicle-2 from NASA’s Armstrong Flight Research Center for display at the Air Force Test Flight Museum at Edwards Air Force Base. Right: Lunar Landing Training Vehicle-3 on display outside the Teague Auditorium at NASA’s Johnson Space Center in Houston.
      In addition to playing a critical role in the Moon landing program, these early research and test vehicles aided in the development of digital fly-by-wire technology for future aircraft. LLRV-2 is on display at the Air Force Flight Test Museum at Edwards AFB (on loan from AFRC). Visitors can view LLTV-3 suspended from the ceiling in the lobby of the Teague Auditorium at JSC.
      The monograph Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle provides an excellent and detailed history of the LLRV.
      Explore More
      11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
      Article 1 week ago 12 min read Five Years Ago: First All Woman Spacewalk
      Article 2 weeks ago 6 min read Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...