Jump to content

Joshua Schlieder: Feet on the Ground, Head in the Stars


NASA

Recommended Posts

  • Publishers

8 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Name: Joshua Schlieder

Title: Wide Field Instrument Scientist for the Nancy Grace Roman Space Telescope and Operations Project Scientist for the Neil Gehrels Swift Observatory

Formal Job Classification: Research Astrophysicist

Organization: Stellar Astrophysics and Exoplanets Laboratory, Astrophysics Division, Sciences and Exploration Directorate (Code 667)

Joshua Schlieder, a man with a short brown beard, smiles and holds the camera up in a selfie outdoors near Crater Lake, Oregon. Joshua wears blue reflective sunglasses, a gray baseball cap with the NASA logo, and a navy T-shirt, and carries a backpack with pink straps. He takes up part of the left side of the image, with the still, deep blue lake visible in the background. Tan rocks and dirt are visible in the foreground, and the lake's rocky opposite shore is visible in the distance, with blue mountains on the horizon. It is a bright sunny day and the sky is cloudless and blue.
Joshua Schlieder is the Wide Field Instrument scientist for NASA’s Nancy Grace Roman Space Telescope. “I am never bored (but sometimes stressed),” he said. “Every day is a new adventure.”
Courtesy of Joshua Schlieder

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As the Wide Field Instrument scientist for the Roman Space Telescope, I am a member of the project science team and work with other scientists, engineers, and managers to ensure that the Wide Field Instrument, the primary wide field survey camera on Roman, meets its science requirements.

As the operations project scientist for NASA’s Swift Observatory, I work with the principal investigator and project team to ensure that Swift is operating efficiently and obtaining data to meet our science goals and the needs of the astrophysics community.

I also do fundamental astrophysics research focusing on low-mass stars and their exoplanets.

What is your educational background?

From a very young age I was fascinated by the natural world and was constantly trying to understand how it worked. There wasn’t a question I wouldn’t ask or a rock I wouldn’t turn over to understand a little more. This curiosity led me to a B.S. in physics from Bloomsburg University in Pennsylvania. I then received an M.A. and Ph.D. in physics with a concentration in astrophysics from Stony Brook University in New York.

How did you come to Goddard? Why do you stay?

From 2014 – 2016, I had a postdoctoral fellowship at NASA’s Ames Research Center in California to develop science programs for the James Webb Space Telescope and analyze data from the exoplanet hunting K2 mission. In 2016, I went to the NASA Exoplanet Science Institute at the California Institute of Technology as a member of the Exoplanet Archive team. In 2017, I came to Goddard to work on the latest exoplanet hunting mission, TESS, the Transiting Exoplanet Survey Satellite.

Goddard is truly unique compared to other academic institutions. It has an outstanding scientific environment where you can perform cutting edge astrophysics research and directly contribute to developing and implementing NASA missions.

A close-up photo of a reddish-orange flower with a brown butterfly perched on its fuzzy golden center.
Goddard astrophysicist Joshua Schlieder helps make sure the Roman Space Telescope’s Wide Field Instrument meets its science requirements. He also gardens, spends time outdoors, and goes to minor league baseball games in his spare time.
Courtesy of Joshua Schlieder

What is most interesting about your role on Roman?

We are working to build and test a new scientific instrument that will fly on a space telescope. I have the privilege of contributing to this effort and working with really excellent people from all disciplines. We combine our different scientific and technical backgrounds to solve difficult problems.

I am never bored (but sometimes stressed). Every day is a new adventure.

What is most interesting about your role on Swift?

Swift has been operating for many years. I enjoy working on a team that is a well-oiled machine. The observatory is dynamic, it is always doing something new and can observe about 100 targets each day. Unlike many space telescopes, it can rapidly respond to astronomical events and re-point very quickly, delivering new science on short notice. Swift was designed in a way that enables it to observe many different types of targets over a wide range of wavelengths and it is exciting to be a part of the planning and execution of its diverse science program.

What basic astrophysics research do you do? What is the one, big discovery you would like to make?

I study red dwarf stars and the exoplanets that orbit them. Red dwarfs are a class of star that are generally about half the size of the Sun or smaller, very faint, and have red colors because of their relatively low temperatures. Red dwarfs are everywhere, they make up more than 70% of the stars in our galaxy! But, because they are not very bright, you cannot see them with the naked eye. I also study exoplanets. Exoplanets are planets that are outside our solar system orbiting other stars. We know of many exoplanets that orbit red dwarf stars. It is common to find a red dwarf with several Earth sized planets in a compact system that would easily fit inside the orbit of Mercury in our solar system.

I hope someday that the astrophysics community will detect enough planets around red dwarf stars to truly understand the population and disentangle how such small stars can form so many planets. Since red dwarfs are the most common type of star, most planets in the galaxy orbit them. They may be our best opportunity to find planets that are similar to Earth and are close enough to study in great detail.

A close-up shot of white plumeria flowers with yellow centers, covered in dewdrops and shining in the sun. Green leaves and a pink background are out of focus behind the flowers.
Goddard astrophysicist Joshua Schlieder grows tropical plants indoors when he isn’t working on the Roman Space Telescope’s Wide Field Instrument. “Research is never done, but that does not mean you should be doing it all the time. Having aspects of your life that are separate from astrophysics will keep you healthy and happy.”
Courtesy of Joshua Schlieder

What makes a good astrophysicist?

You have to be imaginative and think outside the box but also learn from criticism. You have to enjoy collaborating with many people because the best ideas come from the combined efforts of people with different backgrounds and different experiences.

You need a deep desire to push forward to understand the unknown, even if you do not know what path you may follow. You need to have a drive for new knowledge and an ability to go in different directions at the same time to solve a problem.

You have to embrace big ideas. What in the universe is waiting to be understood? How do I take what I know and work with other people to try to figure it out? Astrophysicists are both linear and abstract thinkers. In general, we have to be abstract in coming up with ideas and linear in solving them but many times we rely on both ways of thinking.

We also have to be able to explain these ideas to others in the community and the public. Communicating our work and explaining why it is important is a critical skill.

As a mentor, what is the most important advice you give?

Trust in your own ideas and abilities. You will run into setbacks and difficult times when projects are slow to move forward or even regress, but every day is progress and you will get there.

You have to expect, accept, and learn from constructive criticism. When someone pushses back on an idea, an approach, or a result, know that you are capable and use it as an opportunity to improve.  

Ask questions, meet people, and build your community. Seek out those who may have the answers you need. You are not alone. Many people will be working on similar ideas, so work with them to see how everyone can build on an idea together. Being a scientist is tough, it is very competitive and everyone, whether they admit it or not, needs support. These people will be your support network.

Most importantly, take time for yourself. Research is never done, but that does not mean you should be doing it all the time. Having aspects of your life that are separate from astrophysics will keep you healthy and happy.

Joshua Schlieder, a man with a short brown beard, grins and hugs a fluffy green mascot at a baseball game. Joshua wears blue reflective sunglasses, a gray baseball cap, and a gray T-shirt. The mascot wears a white baseball jersey and backwards gray baseball cap.
Goddard astrophysicist Joshua Schlieder relaxes at a Bowie Baysox game. “I also really enjoy minor league baseball, I try to see the local team in every city I visit. I have several dozen minor league team hats.”
Courtesy of Joshua Schlieder

Who inspires you?

The early career scientists that I work with. They bring huge enthusiasm and new ideas to projects and are willing and able to dive into big problems. I am always impressed with their ingenuity, capability, and resilience. It is a privilege to work with people that are bound to be future leaders in the field.

What is your hobby?

I like to garden and grow outdoor plants. I like plants that produce fruit. I am growing several fig trees, a plum tree, a paw paw, and raspberry, blueberry, and goji berry bushes. I also grow tropical plants indoors including orchids, which can be difficult but rewarding.

I enjoy going on long distance bicycle rides and recently completed a 100 km “metric century.” I also love being outdoors hiking, camping, and fishing.

I also really enjoy minor league baseball, I try to see the local team in every city I visit. I have several dozen minor league team hats.

Who is your favorite author?

I read a lot of science fiction and fantasy novels. I especially enjoy books by N. K. Jemisin and Alastair Reynolds.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Feet on the Ground, Head in the Stars. (I know this is eight words, but I was struggling to fit one to six.)

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Jan 03, 2024
Editor
Jessica Evans
Contact

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
    • By NASA
      On Nov. 6, 2024, NASA Night brought cosmic excitement to the Toyota Center, where Johnson Space Center employees joined 16,208 fans who interacted with NASA as they watched the Houston Rockets claim victory over the San Antonio Spurs. 

      Energy soared as International Space Station Program Manager Dana Weigel stepped up to take the first shot. 
      International Space Station Program Manager Dana Weigel takes the first shot on Nov. 6, 2024, as the Houston Rockets go up against the San Antonio Spurs at Toyota Center.NASA/Helen Arase Vargas The ceremonial first shot also gave back to the community, with Rockets owner Tilman Fertitta donating $1,000 to the Clutch City Foundation to support underserved youth through education, sports, and disaster relief. 

      Throughout the game, Johnson employees kept the crowd engaged with NASA trivia, creating a “launch countdown” energy that had fans cheering. The arena lit up as Adam Savage narrated a video showcasing the International Space Station’s groundbreaking contributions to science. From unlocking discoveries impossible on Earth to testing critical technologies for our return to the Moon, the orbiting laboratory plays a vital role in advancing medical and social breakthroughs that enhance life on our planet.  

      The Artemis II crew also appeared on the jumbotron, reminding everyone of NASA’s mission to establish a long-term presence on the Moon for scientific discovery, economic benefits, and to inspire a new generation of explorers. 
      Dana Weigel, center, shows off a Rockets jersey on the court with Rockets mascot Clutch, left, and NASA mascot Cosmo.NASA/Helen Arase Vargas  In the Sky Court area of the stadium concourse, Johnson volunteers held “mission control” with an interactive exhibit that drew fans in like a gravitational pull. From exploring a Space Launch System model and handling a spacesuit helmet and glove to touching a 3.4-billion-year-old Moon rock collected during Apollo 17, NASA’s booth offered attendees a glimpse into space exploration. 

      Visitors had the chance to ask questions and bring home mission pins, stickers, and hands-on activities, provided by the International Space Station Program and the Artemis campaign. Seventy-five “Lucky Row” fans also received bags filled with NASA outreach materials, courtesy of the Johnson Public Engagement team. 
      NASA’s Johnson Space Center volunteers connect with fans at the game through an interactive exhibit.NASA The Orion Flight Simulator, with its realistic switches and displays, provided an immersive experience that allowed fans to dock the Orion spacecraft to humanity’s first lunar space station, Gateway.  

      More than 600 fans eagerly lined up to experience NASA’s mobile exhibit trailer in the Toyota Center parking lot—drawing lines as long as those at the box office. 
      Fans engage with the Orion Flight Simulator at NASA’s booth. NASA/Helen Arase Vargas Fans also tested their skills with a crew assembly activity focused on science, technology, engineering, and mathematics, simulating the challenges astronauts face in orbit. NASA’s inflatable mascot, Cosmo, joined the action on the court, posing for photos and adding galactic fun to events like the T-shirt giveaway. 
      The Houston Rockets mascot Clutch and NASA mascot Cosmo team up on the court at Toyota Center in Houston.NASA/Helen Arase Vargas  NASA’s presence brought together the excitement of sports with the wonder of space exploration, inspiring fans to keep shooting for the stars. 

      View more images from the event below.  
      View the full article
    • By NASA
      On Sept. 20, 2024, four students experienced the wonder of space exploration at NASA’s Johnson Space Center in Houston, taking part in an international competition that brought their work to life aboard the International Space Station.  

      Now in its fifth year, the Kibo Robot Programming Challenge (Kibo-RPC) continues to push the boundaries of robotics, bringing together the world’s brightest young minds for a real-world test of programming, problem-solving, and innovation.
      The Kibo Robot Programming Challenge (Kibo-RPC) students tour the Gateway Habitation and Logistics Outpost module at NASA’s Johnson Space Center in Houston.NASA/Helen Arase Vargas The stakes reached new heights in this year’s competition, with 661 teams totaling 2,788 students from 35 countries and regions competing to program robots aboard the orbiting laboratory. Organized by the Japan Aerospace Exploration Agency in collaboration with the United Nations Office for Outer Space Affairs, the challenge provided a unique platform for students to test their skills on a global stage. 

      Meet Team Salcedo 

      Representing the U.S., Team Salcedo is composed of four talented students: Aaron Kantsevoy, Gabriel Ashkenazi, Justin Bonner, and Lucas Paschke. Each member brought a unique skill set and perspective, contributing to the team’s well-rounded approach to the challenge. 
      From left to right are Kibo-RPC students Gabriel Ashkenazi, Lucas Paschke, Aaron Kantsevoy, and Justin Bonner. NASA/Helen Arase Vargas The team was named in honor of Dr. Alvaro Salcedo, a robotics teacher and competitive robotics coach who had a significant impact on Kantsevoy and Bonner during high school. Dr. Salcedo played a crucial role in shaping their interests and aspirations in science, technology, engineering, and mathematics (STEM), inspiring them to pursue careers in these fields. 

      Kantsevoy, a computer science major at Georgia Institute of Technology, or Georgia Tech, led the team with three years of Kibo-RPC experience and a deep interest in robotics and space-based agriculture. Bonner, a second-year student at the University of Miami, is pursuing a triple major in computer science, artificial intelligence, and mathematics. Known for his quick problem-solving, he played a key role as a strategist and computer vision expert. Paschke, a first-time participant and computer science student at Georgia Tech, focused on intelligence systems and architecture, and brought fresh insights to the table. Ashkenazi, also studying computer science at Georgia Tech, specialized in computer vision and DevOps, adding depth to the team’s technical capabilities. 

      AstroBee Takes Flight 

      The 2024 competition tasked students with programming AstroBee, a free-flying robot aboard the station, to navigate a complex course while capturing images scattered across the orbital outpost. For Team Salcedo, the challenge reached its peak as their code was tested live on the space station.  
      The Kibo-RPC students watch their code direct Astrobee’s movements at Johnson Space Center with NASA Program Specialist Jamie Semple on Sept. 20, 2024.NASA/Helen Arase Vargas The robot executed its commands in real time, maneuvering through the designated course to demonstrate precision, speed, and adaptability in the microgravity environment. Watching AstroBee in action aboard the space station offered a rare glimpse of the direct impact of their programming skills and added a layer of excitement that pushed them to fine-tune their approach. 

      Overcoming Challenges in Real Time 

      Navigating AstroBee through the orbital outpost presented a set of unique challenges. The team had to ensure the robot could identify and target images scattered throughout the station with precision while minimizing the time spent between locations.  
      The Kibo-RPC students watch in real time as the free-flying robot Astrobee performs maneuvers aboard the International Space Station, executing tasks based on their input to test its capabilities. NASA/Helen Arase Vargas Using quaternions for smooth rotation in 3D space, they fine-tuned AstroBee’s movements to adjust camera angles and capture images from difficult positions without succumbing to the limitations of gimbal lock. Multithreading allowed the robot to simultaneously process images and move to the next target, optimizing the use of time in the fast-paced environment. 

      The Power of Teamwork and Mentorship 

      Working across different locations and time zones, Team Salcedo established a structured communication system to ensure seamless collaboration. Understanding each team member’s workflow and adjusting expectations accordingly helped them maintain efficiency, even when setbacks occurred. 
      Team Salcedo tour the Space Vehicle Mockup Facility with their NASA mentors (from top left to right) Education Coordinator Kaylie Mims, International Space Station Research Portfolio Manager Jorge Sotomayer, and Kibo-RPC Activity Manager Jamie Semple. NASA/Helen Arase Vargas Mentorship was crucial to their success, with the team crediting several advisors and educators for their guidance. Kantsevoy acknowledged his first STEM mentor, Casey Kleiman, who sparked his passion for robotics in middle school.  

      The team expressed gratitude to their Johnson mentors, including NASA Program Specialist Jamie Semple, Education Coordinator Kaylie Mims, and International Space Station Research Portfolio Manager Jorge Sotomayer, for guiding them through the program’s processes and providing support throughout the competition. 

      They also thanked NASA’s Office of STEM Engagement for offering the opportunity to present their project to Johnson employees.  

      “The challenge mirrors how the NASA workforce collaborates to achieve success in a highly technical environment. Team Salcedo has increased their knowledge and learned skills that they most likely would not have acquired individually,” said Semple. “As with all of our student design challenges, we hope this experience encourages the team to continue their work and studies to hopefully return to NASA in the future as full-time employees.” 

      Pushing the Boundaries of Innovation 

      The Kibo-RPC allowed Team Salcedo to experiment with new techniques, such as Slicing Aided Hyperinference—an approach that divides images into smaller tiles for more detailed analysis. Although this method showed promise in detecting smaller objects, it proved too time-consuming under the competition’s time constraints, teaching the students valuable lessons about prioritizing efficiency in engineering. 
      The Kibo-RPC students present their robotic programming challenge to the International Space Station Program. NASA/Bill Stafford For Team Salcedo, the programming challenge taught them the value of communication, the importance of learning from setbacks, and the rewards of perseverance. The thrill of seeing their code in action on the orbital outpost was a reminder of the limitless possibilities in robotics and space exploration. 

      Inspiring the Next Generation 

      With participants from diverse backgrounds coming together to compete on a global platform, the Kibo-RPC continues to be a proving ground for future innovators.  

      The challenge tested the technical abilities of students and fostered personal growth and collaboration, setting the stage for the next generation of robotics engineers and leaders. 
      The Kibo-RPC students and their mentors at the Mission Control Center. NASA/Helen Arase Vargas
      As Team Salcedo looks ahead, they carry with them the skills, experiences, and inspiration needed to push the boundaries of human space exploration.  

      “With programs like Kibo-RPC, we are nurturing the next generation of explorers – the Artemis Generation,” said Sotomayer. “It’s not far-fetched to imagine that one of these students could eventually be walking on the Moon or Mars.” 

      The winners were announced virtually from Japan on Nov. 9, with Team Salcedo achieving sixth place. 

      Watch the international final round event here. 

      For more information on the Kibo Robot Programming Challenge, visit: https://jaxa.krpc.jp/
      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) America Reyes Wang, Sepideh Khajehei, Julie Nottage, and Ryan Felton. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond.
      Space Biosciences Star: America Reyes Wang
      America Reyes Wang serves as the Space Biology Biospecimen Sharing Program (BSP) Lead in the Space Biosciences Research Branch, where she guides a team of support scientists and a logistics coordinator in planning and performing detailed, collaborative dissections to maximize the scientific return from biological investigations. Under her leadership, the BSP team has contributed over 5,000 samples to the NASA Biological Institutional Scientific Collection (NBISC), approximately half of which were collected in the last 10 months.
      Earth Science Star: Sepideh Khajehei
      Sepideh Khajehei is a NASA Earth eXchange (NEX) Data and Research Scientist in the Biospheric Science Branch, for the Bay Area Environmental Research Institute. She is recognized for her dedicated support of the NASA Administrator’s Earth Information Center, and recently for her outstanding support for an urgent request to revise climate indices just days before the October 7, 2024, opening of NASA’s Hometown Climate Dashboard at the Smithsonian Institute in Washington, D.C.
      Space Science & Astrobiology Star: Julie Nottage
      Julie Nottage continuously goes above and beyond in her role as the Space and Earth Sciences Facilities Service Manager.  She keeps a multi-use interdisciplinary science building running across all aspects of operations and is the go-to person for any problem.  Her can-do approach and wealth of knowledge ensures the facility’s high-quality operation that enables scientists and engineers to focus on their research and instrument work.  Her quality work and extensive coordination of the Voluntary Protection Program allowed these month-long inspections to run smoothly with an improved safety outcome.
      Space Science & Astrobiology Star: Ryan Felton
      Ryan Felton, a NASA Postdoctoral Management Fellow with the Exobiology Branch, is recognized for his successful coordination of an engaging community-wide seminar series focused on Artificial Intelligence/Machine Learning (AI/ML). This seminar series featured four speakers so far over six months on a variety of exciting topics to advance AI/ML knowledge and use in the branch’s research.
      View the full article
    • By NASA
      A preview image of the Minecraft world inspired by NASA’s James Webb Space Telescope. Credit: Minecraft NASA invites gamers, educators, and students to grab their pickaxe and check out its latest collaboration with Minecraft exploring a new world inspired by the agency’s James Webb Space Telescope. The partnership allows creators to experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real Webb images.
      The James Webb Space Telescope Challenges were developed to inspire the next generation of scientists, engineers, and technicians. Through the game, students can immerse themselves in the science and technology behind Webb, deepening their understanding of NASA’s mission and sparking an interest in the real-world applications of science, technology, engineering, and math (STEM).
      “We’re thrilled to bring the wonders and science of NASA’s James Webb Space Telescope into the hands of the Artemis Generation through this exciting Minecraft collaboration,” said NASA Deputy Administrator Pam Melroy. “This collaboration is yet another way anyone can join NASA as we explore the secrets of the universe and solve the world’s most complex problems, making space exploration engaging for learners of all ages.” 
      NASA’s James Webb Space Telescope launched to space Dec. 25, 2021, and has gone on to make detailed observations of the planets within our own solar system, peer into the atmospheres of planets orbiting other stars outside our solar system, and capture images and spectra of the most distant galaxies ever detected.
      “NASA’s collaboration with Minecraft allows players to experience the excitement of one of the most ambitious space missions ever,” said Mike Davis, Webb project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “No matter where Webb looks, it sees something intriguing, setting the stage for amazing discoveries yet to come. As people explore the Minecraft world of Webb, we hope they will be inspired to carry that interest further and maybe someday help NASA build future space telescopes.”
      Webb is the world’s premier space science observatory. The space telescope is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      NASA’s Office of STEM Engagement provides unique opportunities for students to learn about STEM. In 2023, NASA partnered with Minecraft on an Artemis Challenge where users could build and launch a rocket, guide their Orion spacecraft, and even establish a lunar base alongside their team. Through collaboration with partners such as Microsoft, NASA can share the excitement of space exploration with even more students who are part of the Artemis Generation.
      Learn more about how NASA’s Office of STEM Engagement is inspiring the next generation of explorers at:
      https://www.nasa.gov/stem
      View the full article
  • Check out these Videos

×
×
  • Create New...