Jump to content

Mission Manager Update: VIPER Flight Rover Half-Built!


NASA

Recommended Posts

  • Publishers

The VIPER team is hard at work building the flight vehicle that will be going to the surface of the Moon this time next year! In fact, we’re about halfway through the build, and you can interactively watch the process and hear from experts on the team, in various livestreams throughout the process.

All the science instrument teams have delivered their payloads to the VIPER Systems Integration & Test team, which will install them into the actual flight rover; in fact, all but one is already installed! This was a huge milestone over the past summer, and a frequent sticking point for many flight projects. I’m happy to have all the birds in the nest!

We also have taken delivery of most of the key pieces of hardware we acquired from our various external vendors. This is a very important milestone as well, since a large number of vendors of critical components have been quite behind schedule in their deliveries to the project, due to pandemic-era supply chain issues that continue to reverberate throughout the industry in some unexpected ways. It is good to have VIPER past this point in development, where we can now focus on bringing everything together into a functioning rover.

So now that we are building the flight article, we are able to see precisely how well our design plans are working in reality. There have been some reveals in the first half of the rover build, which we’ve had to navigate, including connector issues from vendors, where we’ve discovered and corrected some design and Foreign Object Debris issues, which prevented connectors from reliably working. We’ve also found some unexpected performance characteristics revealed by some vendor hardware, which we have had to then fold into our plans for how we operate VIPER…These issues and solutions are all part of the challenging process of building a flight article, and ensuring it can survive the very harsh environment of launch, landing, and operations on the lunar surface.

Once the team completes the flight rover assembly, the next step will be to test that rover in the kinds of environments it will see on the mission. This activity will be our primary focus in 2024, and our final step prior to delivering VIPER for launch integration.

Go VIPER!

– Dan Andrews, VIPER Project Manager

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:06:45 Smile is the Solar wind Magnetosphere Ionosphere Link Explorer, a brand-new space mission currently in the making. It will study space weather and the interaction between the solar wind and Earth’s environment.
      Unique about Smile is that it will take the first X-ray images and videos of the solar wind slamming into Earth’s protective magnetic bubble, and its complementary ultraviolet images will provide the longest-ever continuous look at the northern lights.
      In this first of several short videos, David Agnolon (Smile Project Manager) and Philippe Escoubet (Smile Project Scientist) talk about the why and the how of Smile. You’ll see scenes of the building and testing of the spacecraft’s payload module by Airbus in Madrid, including the installation of one of the European instruments, the Soft X-ray Imager from the University of Leicester.
      Smile is a 50–50 collaboration between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS). ESA provides the payload module of the spacecraft, which carries three of the four science instruments, and the Vega-C rocket which will launch Smile to space. CAS provides the platform module hosting the fourth science instrument, as well as the service and propulsion modules.
      View the full article
    • By European Space Agency
      Image: Getting Proba-3 fit for flight View the full article
    • By NASA
      JPL is a research and development lab federally funded by NASA and managed by Caltech. NASA/JPL-Caltech Workforce statement and memo to employees
      JPL statement issued on Nov. 12, 2024:
      While we have taken various measures to meet our current FY’25 budget allocation, we have reached the difficult decision to reduce the JPL workforce through layoffs. This reduction affects approximately 325 of our colleagues, an impact of about 5% of our workforce. The impacts are occurring across technical, business, and support areas of the Laboratory. These are painful but necessary adjustments that will enable us to adhere to our budget while continuing our important work for NASA and our nation.
      The following is a memo sent earlier today from JPL Director Laurie Leshin to employees:
      Dear Colleagues,
      This is a message I had hoped not to have to write. I’m reaching out to share the difficult news that JPL will be taking a workforce action tomorrow, Nov. 13, resulting in a layoff of approximately 325 of our colleagues, or ~5% of our workforce. Despite this being incredibly difficult for our community, this number is lower than projected a few months ago thanks in part to the hard work of so many people across JPL. The workforce assessment conducted as part of this process has been both extensive and thorough, and although we can never have perfect insight into the future, I sincerely believe that after this action we will be at a more stable workforce level moving forward.
      How we got here:
      During our last town hall, I discussed our continued funding challenges and projections of what the potential impact on our workforce could look like. I shared that we had been working through multiple workforce scenarios to address the dynamic funding environment, and that we have been doing everything we can, in partnership with our colleagues at NASA and elsewhere, to minimize adverse effects on JPL’s capabilities and team.
      Unfortunately, despite all these efforts, we need to make one further workforce reduction to meet the available funding for FY’25. This reduction is spread across essentially all areas of the Lab including our technical, project, business, and support areas. We have taken seriously the need to re-size our workforce, whether direct-funded (project) or funded on overhead (burden). With lower budgets and based on the forecasted work ahead, we had to tighten our belts across the board, and you will see that reflected in the layoff impacts.
      As part of our workforce assessment and determining where reductions are being made, we have taken time to complete a full review of our competencies, future mission needs, and we have established guidance for our core capabilities across the Laboratory. We have worked closely with the Executive Council, division managers, project leadership and others to ensure we maintain the appropriate levels of technical expertise, capacity for innovation, and ability to deliver on an exciting future for JPL. Our focus will continue to be on empowering managers to support their teams through this action and equipping all of us with a variety of resources as we move forward together.
      Here are the details about what will happen tomorrow:
      Unless notified otherwise, all employees are required to work from home tomorrow Nov. 13, regardless of their telework status. Tomorrow you will be invited to a short, virtual, Lab-wide meeting with myself and Deputy Director Leslie Livesay at 9:30 a.m. We will relay the details of where we are in the process and what to expect. Please look out for the meeting notification that will follow this memo. There will not be organization-level notification meetings as in February. This one meeting will provide the information needed for the entire Lab at once.
      Our approach is to prioritize notifying everyone via email as quickly as possible whether their role is being affected by the layoff or not. Then we can rapidly shift to providing personalized support to our laid-off colleagues who are part of the workforce reduction, including offering dedicated time to discuss their benefits, and several other forms of assistance. Because of system limitations, the individual email notifications will take place over several hours tomorrow. A schedule of the notifications, which will occur by organization, will be shared in the virtual briefing tomorrow morning and also posted on JPL Space, the JPL HR Website, and Slack. You can also find answers to Frequently Asked Questions (FAQs) on our website here.
      Our JPL Community:
      I know the absence of our colleagues will be acutely felt, especially after a very challenging year for the Lab. To those leaving JPL as a result of this action, we are grateful for your many vital contributions to JPL and to NASA. We will be here to support you during this time to ensure this transition is as smooth as possible.
      To reiterate to you all, I believe this is the last cross-Lab workforce action we will need to take in the foreseeable future. After this action, we will be at about 5,500 JPL regular employees. I believe this is a stable, supportable staffing level moving forward. While we can never be 100% certain of the future budget, we will be well positioned for the work ahead. This may not help much in this difficult moment, but I do want to be crystal clear with my thoughts and perspective. If we hold strong together, we will come through this, just as we have done during other turbulent times in JPL’s nearly 90-year history. Finally, even though the coming leadership transition at NASA may introduce both new uncertainties and new opportunities, this action would be happening regardless of the recent election outcome.
      While I know many of us are feeling anger or disappointment with this news, I encourage everyone to act with grace and empathy toward one another, and to lean on each other for support. I will be speaking with you again very soon to discuss our path ahead. Until then, know that we are an incredibly strong organization – our dazzling history, current achievements, and relentless commitment to exploration and discovery position us well for the future.
      Laurie
      Share
      Details
      Last Updated Nov 12, 2024 Related Terms
      Jet Propulsion Laboratory Explore More
      4 min read Mining Old Data From NASA’s Voyager 2 Solves Several Uranus Mysteries
      Article 1 day ago 6 min read Powerful New US-Indian Satellite Will Track Earth’s Changing Surface
      Article 4 days ago 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami
      Article 2 weeks ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Quincy Eggert The design and build of a unique NASA pod, produced to advance computer vision for autonomous aviation, was recently completed in-house at NASA’s Armstrong Flight Research Center in Edwards, California, by using the center’s unique fabrication capabilities. The pod is called the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE). NASA Armstrong can take an idea from a drawing to flight with help from the center’s Experimental Fabrication Shop.  
      NASA researcher James Cowart adds the top back onto the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The pod houses sensors, wiring and cameras. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris NASA subject matter experts developed the idea for the project, after which engineers drew up plans and selected materials. The Experimental Fabrication Shop received those plans and gathered the materials to fabricate the pod.  
      After the pod was built, it moved to NASA Armstrong’s Engineering Support Branch, where electronics technicians and other specialists installed instruments inside of it. Once completed, the pod went through a series of tests at NASA Armstrong to make sure it was safe to fly at NASA’s Kennedy Space Center in Florida on an Airbus H135 helicopter. The engineering team made final adjustments to ensure the pod would collect the correct data prior to installation. More about the design and fabrication process, and the pod’s capabilities, is available to view in a NASA video.
      NASA researchers James Cowart and Elizabeth Nail add sensors, wiring and cameras, to the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris Share
      Details
      Last Updated Nov 12, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Ames Research Center Armstrong Flight Research Center Drones & You Glenn Research Center Kennedy Space Center Langley Research Center Explore More
      5 min read NASA Funds New Studies Looking at Future of Sustainable Aircraft
      Article 31 mins ago 4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias
      Article 1 day ago 3 min read Interview with OCEANOS Instructor Samuel Suleiman
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Advanced Air Mobility Mission
      NASA’s Advanced Air Mobility (AAM) research will transform our communities by bringing the movement of people and goods off the ground, on…
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
      NASA’s Mars rover Curiosity acquired this image of its workspace, which includes several targets for investigation — “Buttress Tree,” “Forester Pass,” “Crater Mountain,” “Mahogany Creek,” and “Filly Lake.” Curiosity used its Left Navigation Camera on Nov. 8, 2024 — sol 4357, or Martian day 4.357, of the Mars Science Laboratory mission — at 00:06:17 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 8, 2024
      After the excitement of Wednesday’s plan, it was a relief to come in today to hear that the drive toward our exit from Gediz Vallis completed successfully and that we weren’t perched on any rocks or in any other precarious position. This made for a very smooth planning morning, which is always nice on a Friday after a long week. 
      But that isn’t to say that Curiosity will be taking it easy for the weekend. Smooth planning means we have lots of time to pack in as much science as we can fit. Today, this meant that the geology group (GEO) got to name eight new targets, and the environmental group (ENV) got to spend some extra time contemplating the atmosphere. Reading through the list of target names from GEO felt a bit like reading a travel guide — top rocks to visit when you’re exiting Gediz Vallis! 
      If you look to the front of your rover, what we refer to as the “workspace” (and which you can see part of in the image above), you’ll see an array of rocks. Take in the polygonal fractures of “Colosseum Mountain” and be amazed by the structures of “Tyndall Creek” and “Cascade Valley.” Get up close and personal with our contact science targets, “Mahogany Creek,” “Forester Pass,” and “Buttress Tree.” Our workspace has something for everyone, including the laser spectrometers in the family, who will find plenty to explore with “Filly Lake” and “Crater Mountain.” We have old favorites too, like the upper Gediz Vallis Ridge and the Texoli outcrop. 
      After a busy day sightseeing, why not kick back with ENV and take a deep breath? APXS and ChemCam have you covered, watching the changing atmospheric composition. Look up with Navcam and you may see clouds drifting by, or spend some time looking for dust devils in the distance. Want to check the weather before planning your road trip? Our weather station REMS works around the clock, and Mastcam and Navcam are both keeping an eye on how dusty the crater is. 
      All good vacations must come to an end, but know that when it’s time to drive away there will be many more thrilling sights to come!
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Nov 11, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4357–4358: Turning West


      Article


      3 days ago
      2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
      The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…


      Article


      5 days ago
      3 min read Sols 4355-4356: Weekend Success Brings Monday Best


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...