Jump to content

Recommended Posts

Posted
One_million_astronomical_objects_card_fu Video: 00:04:10

Embark on a cosmic journey with ESA as we explore the universe through the lens of ‘One Million’. From the scorching temperatures of the Sun's corona to the cosmic gaze of the NASA/ESA/CSA James Webb Space Telescope — discover the astronomical wonders that surround us. Join our space community in celebrating a momentous occasion — 1 MILLION subscribers on YouTube! Thank you for your enthusiasm and support.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      James Gentile always wanted to fly. As he prepared for an appointment to the U.S. Air Force Academy to become a pilot, life threw him an unexpected curve: a diagnosis of Type 1 diabetes. His appointment was rescinded. 

      With his dream grounded, Gentile had two choices—give up or chart a new course. He chose the latter, pivoting to aerospace engineering. If he could not be a pilot, he would design the flight simulations that trained those who could. 
      Official portrait of James Gentile. NASA/Robert Markowitz  As a human space vehicle simulation architect at NASA’s Johnson Space Center in Houston, Gentile leads the Integrated Simulation team, which supports the Crew Compartment Office within the Simulation and Graphics Branch. He oversees high-fidelity graphical simulations that support both engineering analysis and flight crew training for the Artemis campaign. 

      His team provides critical insight into human landing system vendor designs, ensuring compliance with NASA’s standards. They also develop human-in-the-loop simulations to familiarize teams with the challenges of returning humans to the lunar surface, optimizing design and safety for future space missions. 

      “I take great pride in what I have helped to build, knowing that some of the simulations I developed have influenced decisions for the Artemis campaign,” Gentile said.  

      One of the projects he is most proud of is the Human Landing System CrewCo Lander Simulation, which helps engineers and astronauts tackle the complexities of lunar descent, ascent, and rendezvous. He worked his way up from a developer to managing and leading the project, transforming a basic lunar lander simulation into a critical tool for the Artemis campaign. 

      What began as a simple model in 2020 is now a key training asset used in multiple facilities at Johnson. The simulation evaluates guidance systems and provides hands-on piloting experience for lunar landers. 
      James Gentile in the Simulation Exploration and Analysis Lab during a visit with Apollo 16 Lunar Module Pilot Charlie Duke. From left to right: Katie Tooher, Charlie Duke, Steve Carothers, Mark Updegrove, and James Gentile. NASA/James Blair Before joining Johnson as a contractor in 2018, Gentile worked in the aviation industry developing flight simulations for pilot training. Transitioning to the space sector was challenging at first, particularly working alongside seasoned professionals who had been part of the space program for years. 

      “I believe my experience in the private sector has benefited my career,” he said. “I’ve been able to bring a different perspective and approach to problem-solving that has helped me advance at Johnson.” 

      Gentile attributes his success to never being afraid to speak up and ask questions. “You don’t always have to be the smartest person in the room to make an impact,” he said. “I’ve been able to show my value through my work and by continuously teaching myself new skills.” 

      As he helps train the Artemis Generation, Gentile hopes to pass on his passion for aerospace and simulation development, inspiring others to persevere through obstacles and embrace unexpected opportunities. 
      “The most important lessons I’ve learned in my career are to build and maintain relationships with your coworkers and not to be afraid to step out of your comfort zone,” he said.  
      James Gentile with his son at NASA’s Johnson Space Center during the 2024 Bring Youth to Work Day. His journey did not go as planned, but in the end, it led him exactly where he was meant to be—helping humanity take its next giant leap. 

      “I’ve learned that the path to your goals may not always be clear-cut, but you should never give up on your dreams,” Gentile said. 
      View the full article
    • By European Space Agency
      At the European Space Agency’s technical heart in the Netherlands, engineers have spent the last five months unboxing and testing elements of Europe’s next space science mission. With the two main parts now joined together, Smile is well on its way to being ready to launch by the end of 2025.
      View the full article
    • By European Space Agency
      The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
      View the full article
    • By NASA
      Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
      Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
      NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”  
      Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
      Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
      Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
      “Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
      Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
      But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
      An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
      The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
      Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum. 
      Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.

      Download high-resolution video and images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Jan 16, 2025 Related Terms
      Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
    • By NASA
      6 min read
      NASA Research To Be Featured at American Astronomical Society Meeting
      In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. NASA, ESA, CSA, STScI, Webb ERO Production Team From new perspectives on the early universe to illuminating the extreme environment near a black hole, discoveries from NASA missions will be highlighted at the 245th meeting of the American Astronomical Society (AAS). The meeting will take place Jan. 12-16 at the Gaylord National Resort & Convention Center in National Harbor, Maryland.
      Press conferences highlighting results enabled by NASA missions will stream live on the AAS Press Office YouTube channel. Additional agency highlights for registered attendees include:
      NASA Town Hall: Monday, Jan. 13, 12:45 p.m. EST Nancy Grace Roman Space Telescope Town Hall: Tuesday, Jan. 14, 6:30 p.m. EST James Webb Space Telescope Town Hall: Wednesday, Jan. 15, 6:30 p.m. EST Throughout the week, experts at the NASA Exhibit Booth will deliver science talks about missions including NASA’s James Webb Space Telescope (also called “Webb” or “JWST”), Hubble Space Telescope, Chandra X-ray Observatory, TESS (Transiting Exoplanet Survey Satellite), and NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station that will be repaired in a spacewalk Jan. 16. Talks will also highlight future missions such as Pandora, Roman, LISA (Laser Interferometer Space Antenna), the Habitable Worlds Observatory, and SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), which is targeted to launch in late February; as well as mission concepts for NASA’s new Probe Explorers mission class in astrophysics, open science, heliophysics, and NASA Science Activation.
      Members of the media can request interviews with NASA experts on any of these topics by contacting Alise Fisher at alise.m.fisher@nasa.gov.
      Schedule of Highlights (EST)
      Monday, Jan. 13
      10 a.m.: Special Session – “SPHEREx: The Upcoming All-Sky Infrared Spectroscopic Survey”
      Chesapeake 4-5
      10 a.m.: Special Session – “Early Science Results from XRISM [X-Ray Imaging and Spectroscopy Mission]”
      National Harbor 10
      10:15 a.m.: AAS News Conference – “A Feast of Feasting Black Holes”
      Maryland Ballroom 5/6
      News based on data from NASA’s Neil Gehrels Swift Observatory, NICER, NuSTAR (Nuclear Spectroscopic Telescope Array), and Hubble, as well as XMM-Newton, an ESA (European Space Agency) mission with NASA contributions, will be featured:
      “Witnessing the Birth of a New Plasma Jet from a Supermassive Black Hole” “Rapidly Evolving X-Ray Oscillations in the Active Galaxy 1ES 1927+654” “Uncovering the Dining Habits of Supermassive Black Holes in Our Cosmic Backyard with NuLANDS” “The Discovery of a Newborn Quasar Jet Triggered by a Cosmic Dance” 12:45 p.m.: NASA Town Hall
      Mark Clampin, acting deputy associate administrator, Science Mission Directorate at NASA Headquarters
      Potomac Ballroom AB
      2:15 p.m.: AAS News Conference – “Supernovae and Massive Stars”
      Maryland Ballroom 5/6
      News from NASA’s Webb and Hubble space telescopes will be highlighted:
      “JWST Discovery of a Distant Supernova Linked to a Massive Progenitor in the Early Universe” “Core-Collapse Supernovae as Key Dust Producers: New Insights from JWST” “JWST Tracks the Expanding Dusty Fingerprints of a Massive Binary” “Stellar Pyrotechnics on Display in Super Star Cluster” “A Blue Lurker Emerges from a Triple-System Merger” Tuesday, Jan. 14
      10:15 a.m.: AAS News Conference – “Black Holes & New Outcomes from the Sloan Digital Sky Survey”
      Maryland Ballroom 5/6
      News based on data from NASA’s NuSTAR, Chandra, and Webb missions will be highlighted:
      “A Variable X-Ray Monster at the Epoch of Reionization” “JWST’s Little Red Dots and the Rise of Obscured Active Galactic Nuclei in the Early Universe” “Revealing the Mid-Infrared Properties of the Milky Way’s Supermassive Black Hole” 2 p.m.: Special Session – “Open Science: NASA Astrophysics in the Roman Era”
      Chesapeake 4-5
      2:15 p.m.: AAS News Conference – “New Information from Milky Way Highlights”
      Maryland Ballroom 5/6
      News from NASA’s Webb and Chandra missions will be highlighted:
      “Infrared Echoes of Cassiopeia A Reveal the Dynamic Interstellar Medium” “A Path-Breaking Observation of the Cold Neutral Medium of the Milky Way Through Thermal Light Echoes” “X-Ray Echoes from Sgr A* Provide Insight on the 3D Structure of Molecular Clouds in the Galactic Center” 3:40 p.m.: Plenary – “A Detector Backstory: How Silicon Detectors Came to Enable Space Missions”
      Shouleh Nikzad, NASA’s Jet Propulsion Laboratory
      Potomac Ballroom AB
      6:30 p.m.: Nancy Grace Roman Space Telescope Town Hall
      National Harbor 11
      Wednesday, Jan. 15
      8 a.m.: Plenary – “HEAD Bruno Rossi Prize Lecture: The Imaging X-ray Polarimetry Explorer (IXPE)”
      Martin Weisskopf, NASA’s Marshall Space Flight Center (emeritus), and Paolo Soffitta, INAF-IAPS (National Institute for Astrophysics-Institute of Space Astrophysics and Planetology)
      Potomac Ballroom AB
      10 a.m.: Special Session – Habitable Worlds Observatory
      Potomac Ballroom C
      10:15 a.m.: AAS News Conference – “Discovering the Universe Beyond Our Galaxy”
      Maryland Ballroom 5/6
      News from NASA’s Hubble and Webb will be highlighted:
      “The Hubble Tension in Our Own Backyard” “JWST Reveals the Early Universe in Our Backyard” “Growing in the Wind: Watching a Galaxy Seed Its Environment” 11:40 a.m.: Plenary – “Are We Alone? The Search for Life on Habitable Worlds”
      Giada Arney, NASA’s Goddard Space Flight Center
      Potomac Ballroom AB
      2:15 p.m.: AAS News Conference – “New Findings About Stars”
      Maryland Ballroom 5/6
      News based on data from NASA’s Webb and Solar Dynamics Observatory will be highlighted:
      “A Super Star Cluster Is Born: JWST Reveals Dust and Ice in a Stellar Nursery” “The Discovery of Ancient Relics in a Distant Evolved Galaxy” “Exploring the Sun’s Active Regions in the Moments Before Flares” 6:30 p.m.: James Webb Space Telescope Town Hall
      Potomac Ballroom C
      Thursday, Jan. 16
      10:15 a.m.: AAS News Conference – “Exoplanets: From Formation to Disintegration”
      Maryland Ballroom 5/6
      News from NASA’s Pandora, Chandra, TESS, and Webb missions, as well as XMM-Newton, will be highlighted:
      “A New NASA Mission to Characterize Exoplanets and Their Host Stars” “X-Rays in the Prime of Life: Irradiating Vulnerable Planets” “Bright Star, Fading World: Dusty Debris of a Dying Planet” “JWST Exposes Hot Rock Entrails from a Planet’s Demise” 2:15 p.m.: AAS News Conference – “Galactic Histories and Policy Futures”
      Maryland Ballroom 5/6
      News from NASA’s Webb and Hubble will be highlighted:
      “The Boundary of Galaxy Formation: Constraints from the Ancient Star Formation of the Isolated, Extremely Low-Mass Galaxy Leo P” “Resolving 90 Million Stars in the Southern Half of Andromeda” For more information on the meeting, including press registration and the complete meeting schedule, visit:
      https://aas.org/meetings/aas245
      Media Contacts
      Alise Fisher / Liz Landau
      Headquarters, Washington
      202-358-2546 / 202-358-0845
      alise.m.fisher@nasa.gov / elizabeth.r.landau@nasa.gov
      Share








      Details
      Last Updated Jan 10, 2025 Related Terms
      Astrophysics Astrophysics Division Chandra X-Ray Observatory Hubble Space Telescope IXPE (Imaging X-ray Polarimetry Explorer) James Webb Space Telescope (JWST) Nancy Grace Roman Space Telescope TESS (Transiting Exoplanet Survey Satellite) The Universe Explore More
      2 min read Hubble Rings In the New Year


      Article


      11 hours ago
      4 min read Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station


      Article


      2 days ago
      3 min read Astronomy Activation Ambassadors: A New Era


      Article


      1 week ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...