Jump to content

One million astronomical objects


Recommended Posts

One_million_astronomical_objects_card_fu Video: 00:04:10

Embark on a cosmic journey with ESA as we explore the universe through the lens of ‘One Million’. From the scorching temperatures of the Sun's corona to the cosmic gaze of the NASA/ESA/CSA James Webb Space Telescope — discover the astronomical wonders that surround us. Join our space community in celebrating a momentous occasion — 1 MILLION subscribers on YouTube! Thank you for your enthusiasm and support.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
      The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
      We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
      A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
      Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
      The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
      We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
      Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Nov 18, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      6 days ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      6 days ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA SkillBridge Veterans touring Johnson Space Center’s Neutral Buoyancy Laboratory.Credit: NASA NASA is one of America’s Best Employers for Veterans, according to Forbes and Statista. Statista surveyed more than 24,000 military veterans – having served in the United States Armed Forces – working for companies with a minimum of 1,000 employees. Veterans were asked to share opinions about their employer on factors such as working conditions, salary and pay, and topics of interest to the veteran community. 
      This is the fourth consecutive year NASA has earned this recognition.  
      “NASA has a long history of collaboration and commitment to the military community,” said Deborah Sweet, NASA Veterans Employment Program Manager. “In addition to the many military members who have been part of our Astronaut program, many of our civil servants are Veterans who chose to continue serving by supporting NASA’s mission after they hung up the uniform.” 
      Across the agency, veterans deliver subject matter expertise, years of on-the-job training, and advanced skills in everything from information technology to transportation logistics and from supply-chain management to public relations. 
      NASA continues to increase efforts to bring veterans into its ranks. The agency recently expanded its SkillBridge Fellowship Program which provides transitioning members a chance to gain valuable work experience while learning about NASA. 
      Veterans who served on active duty and separated under honorable conditions may also be eligible for special hiring authorities such as veterans’ preference, as well as other veteran specific hiring options when applying for full time roles at NASA. 
      For more information about the NASA SkillBridge Program, visit : https://www.nasa.gov/careers/skillbridge/ 
      For more information about NASA hiring paths for Veterans and Military Spouses, visit: https://www.nasa.gov/careers/veterans-and-military-spouses/
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Orbital Mining Corporation took second place in NASA’s Watts on the Moon Challenge. Left to right: Rob Button, deputy chief of NASA Glenn’s Power Division; three members of the team; Mary Wadel, NASA director of Technology Integration and Partnerships; and NASA astronaut Stephen Bowen. Credit: NASA/Sara Lowthian-Hanna  Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland, hosted the final phase of NASA’s Watts on the Moon Challenge on Sept. 20. NASA astronaut Stephen Bowen attended to help acknowledge the top winners.  
      NASA awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish a long-term human presence on the Moon. 
      This two-phase competition challenged U.S. innovators to develop breakthrough technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. 
      The winning teams are: 
      First Prize ($1 million): Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara , won the grand prize for their hardware solution, which featured the lowest mass and highest efficiency of all competitors.   Second prize ($500,000): Orbital Mining Corporation, a space technology startup in Golden, Colorado, earned the second prize for its hardware solution that also successfully completed the 48-hour test with high performance.  Four teams were invited to refine their hardware and deliver full system prototypes in the  final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn.  
      The University of California (UC), Santa Barbara, took first place in NASA’s Watts on the Moon Challenge. Left to right: Mary Wadel, NASA director of Technology Integration and Partnerships; Rob Button, deputy chief of NASA Glenn’s Power Division; UC Santa Barbara team members; and NASA astronaut Stephen Bowen. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn’s Mary Wadel, director of Technology Integration and Partnerships, recognized the work involved to bring this challenge to its conclusion. Rob Button, deputy chief of Glenn’s Power Division and his team of experts, formulated and executed the challenge and oversaw testing. 
      The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole.  
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. As the agency’s lead center for power systems technologies, NASA Glenn has been involved in the Watts on the Moon Challenge from its inception.  
      Return to Newsletter Explore More
      1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago 15 min read OpenET: Balancing Water Supply and Demand in the West
      Article 20 hours ago 3 min read NASA Activates Resources to Help Assess Impacts from Hurricane Milton
      Article 3 days ago View the full article
    • By NASA
      Learn Home GLOBE Eclipse and Civil Air… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration
      The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian auxiliary of the United States Air Force. The organization has an award-winning aerospace education program that promotes Science, Technology Engineering, & Mathematics (STEM)-related careers and activities. The total solar eclipse on 8 April 2024 was a unique opportunity to design a mission for cadets, senior members, and educators to collect atmospheric data in contribution the Global Learning and Observations to Benefit the Environment (GLOBE) Program’s GLOBE Eclipse protocol, for which a temporary tool in the GLOBE Observer app made it possible for volunteer observers to document and submit air temperature and cloud data during the eclipse.
      For the first time ever, the CAP had cadets and senior members participating in a mission from every wing (US state), in addition to two US territories and 2 Canadian provinces. Over 400 teams with over 3,000 cadets and over 1,000 senior members collected air temperature, clouds, wind, and precipitation for a total of 4 hours before, during, and after the eclipse. This work was led by Capt. Shannon Babb who organized the mission with the aerospace education team led from the Rocky Mountain Region.
      The collaboration between GLOBE Eclipse and CAP gave cadets the opportunity to do real, hands-on Earth science and be part of a mission alongside senior members. It also brought in over 40,000 students and more than 600 educators through the Civil Air Patrol’s education sites involving K-12 formal and informal educators at schools, youth organizations, museums and libraries. This unique collaboration was so successful, the CAP wants to continue doing missions alongside citizen science programs at NASA and the GLOBE Program. A 2025 mission is being formulated, focused on contrail formation using the strengths of the CAP in aeronautics and unique cloud observations made using the GLOBE Observer app. Results and announcements of 2025 mission plans were presented at the Civil Air Patrol National Conference on 16-17 August 2024 in San Antonio, Texas, USA.
      GLOBE Observer is part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      https://www.gocivilairpatrol.com/programs/aerospace-education/curriculum/2024-solar-eclipse
      Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Share








      Details
      Last Updated Oct 07, 2024 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Earth Science Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Science Activation Explore More
      5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute


      Article


      3 days ago
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      4 days ago
      40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4318-4320: One Last Weekend in the Channel
      This image from NASA’s Mars rover Curiosity shows the bright-toned rocks of the “Sheep Creek” target location, intriguing because of their resemblance to previous targets that contained unexpectedly high levels of elemental sulfur. The Left Navigation Camera aboard Curiosity captured this image on Sol 4316 — Martian day 4,316 of the Mars Science Laboratory mission — on Sept. 26, 2024, at 21:10:13 UTC. NASA/JPL-Caltech Earth planning date: Friday, Sept. 27, 2024 
      We’re wrapping up our time in the channel with the highly anticipated examination of the “Sheep Creek” white stones. Last plan’s reposition was a success, so we are able to go ahead with contact science on them this weekend. MAHLI and APXS picked three targets to investigate: “Cloud Canyon,” “Moonlight Lake,” and “Angora Mountain,” all of which sound so lovely and soft, and are quite evocative of these pale stones, which stand out so much against the background. ChemCam is also examining another of the white stones, “Pee Wee Lake.”
      Since this is looking like it will be our last weekend in the channel, we’re packing the plan with all the other last-chance targets before we leave them behind. Mastcam is making a large survey of some other light-toned rocks in the middle distance dubbed “Orchid Lake,” as well as getting a bit more context for an old target, “Marble Falls,” which we first imaged almost two weeks ago. A bit closer to the rover, it will examine a target we’re calling “Brown Bear Pass,” to study the surface properties of the soil. Mastcam will also be looking backwards at our tracks to see if we turned up anything interesting in our travels. And ChemCam has a couple of long-distance observations of another familiar target, “Buckeye Ridge.”
      After all that, it’s time for us to turn back around and head toward the edge of the channel with a drive of 55 meters (about 180 feet) back to our exit point. Even then, our weekend still isn’t over. We have a ChemCam-filled third sol, using AEGIS to autonomously select a target, and then getting a passive sky observation to keep an eye on the amount of different gases like oxygen and water vapor in the atmosphere. Speaking of the atmosphere, here on the environmental side we’re kept busy this weekend looking for dust devils and clouds, and keeping an eye on the amount of dust in the air around us. We’ll wrap up the weekend as we often do — with an early morning dedicated environmental science block.
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Sep 29, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4316-4317: Hunting for Sulfur


      Article


      3 days ago
      3 min read Sols 4314-4315: Wait, What Was That Back There?


      Article


      5 days ago
      3 min read A Striped Surprise
      Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white…


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...