Jump to content

Celebrating the Holiday Season in Space


Recommended Posts

  • Publishers
Posted

The Christmas, Hanukkah, and New Year holidays are joyful events typically spent with family and friends. Astronauts and cosmonauts who find themselves in space during the holidays have found their own unique way to celebrate the occasions. In the early years of the space program, holidays spent in space occurred infrequently, most notably the flight of Apollo 8 around the Moon during Christmas 1968, making them more memorable. As missions became longer and more frequent, holidays in space became more common occasions. For the past 23 years, holidays spent aboard the International Space Station have become annual, if not entirely routine, events.

apollo_8_earthrise_1968 holidays_in_space_2021_2_apollo_8_video_screen_shot
Left: The famous Earthrise photograph, taken by the Apollo 8 crew in lunar orbit. Right: Video of the Apollo 8 crew of Frank Borman, James A. Lovell, and William A. Anders reading from The Book of Genesis.

As the first crew to spend Christmas in space, Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders, celebrated the holiday while circling the Moon in December 1968, the first humans to leave Earth orbit. They immortalized the event on Christmas Eve by taking turns reading the opening verses from the Bible’s Book of Genesis as they broadcast scenes of the Moon gliding by below. An estimated one billion people in 64 countries tuned in to their Christmas Eve broadcast. As they left lunar orbit, Lovell radioed back to Earth, where Christmas Eve had already turned to Christmas Day, “Please be informed there is a Santa Claus!”

holidays_in_space_2022 holidays_in_space_2022
Left: Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue trim their homemade Christmas tree in December 1973. Right: Carr, Gibson, and Pogue hung their stockings aboard Skylab.

During their 84-day record-setting mission aboard the Skylab space station in 1973 and 1974, Skylab 4 astronauts Gerald P. Carr, William R. Pogue, and Edward G. Gibson celebrated Thanksgiving, Christmas, and New Year’s in space – the first crew to spend Thanksgiving and New Year’s in orbit. They built a homemade Christmas tree from leftover food containers, used colored decals as decorations, and topped it with a cardboard cutout in the shape of a comet. Carr and Pogue spent seven hours on a Christmas Day spacewalk to change out film canisters and observe the passing Comet Kohoutek. Once back inside the station, they enjoyed a Christmas dinner complete with fruitcake, talked to their families, and opened presents. They even had orbital visitors of sorts, as Soviet cosmonauts Pyotr I. Klimuk and Valentin V. Lebedev orbited the planet aboard Soyuz 13 between Dec. 18 and 26, marking the first time that astronauts and cosmonauts were in space at the same time. Different orbits precluded any direct contact between the two crews.

soyuz_26_grechko_romanenko_new_year_message_1978 soyuz_26_grechko_romanenko_toasting_1978
Aboard Salyut-6, Georgi M. Grechko, left, and Yuri V. Romanenko, toast to celebrate the new year in space, the first Russian cosmonauts to do so. Image credits: Courtesy of Roscosmos.

In the more secular Soviet era, the New Year’s holiday had more significance than the Jan. 7 observance of Orthodox Christmas. The first cosmonauts to ring in a new year in orbit were Yuri V. Romanenko and Georgi M. Grechko, during their record-setting 96-day mission in 1977 and 1978, aboard the Salyut-6 space station. They toasted the new year during a TV broadcast with the ground. The exact nature of the beverage consumed for the occasion has not been passed down to posterity.

sts_61_hoffman_w_dreidel hoffman_hanukkah_video_screenshot
Left: STS-61 mission specialist Jeffrey A. Hoffman with a dreidel during Hanukkah in December 1993. Right: Video of Hoffman describing how he celebrated Hanukkah aboard space shuttle Endeavour.

The eight-day Jewish holiday of Hanukkah, also known as the Festival of Lights, celebrates the recapture of Jerusalem and rededication of the Second Temple in 164 B.C.E. It occurs in the month of Kislev in the Hebrew lunar calendar, which can fall between late November to late December in the Gregorian calendar. NASA astronaut Jeffrey A. Hoffman celebrated the first Hanukkah in space during the STS-61 Hubble Space Telescope first servicing mission in 1993. Hanukkah that year began on the evening of Dec. 9, after Hoffman completed his third spacewalk of the mission. He celebrated with a traveling menorah, unlit of course, and by spinning a dreidel.

sts_103_christmas_1999
The STS-103 crew show off their Santa hats on the flight deck of space shuttle Discovery in 1999.

The crew of another Hubble Space Telescope repair mission, STS-103, celebrated the first space shuttle Christmas in 1999 aboard Discovery. For Christmas dinner, Curtis L. Brown, Scott J. Kelly, Steven L. Smith, Jean-François A. Clervoy of the European Space Agency (ESA), John M. Grunsfeld, C. Michael Foale, and Claude Nicollier of ESA enjoyed duck foie gras on Mexican tortillas, cassoulet, and salted pork with lentils. Smith and Grunsfeld completed repairs on the telescope during a Christmas Eve spacewalk.

mir_17_new_years_kondakova_with_freixenet_champagne kondakova_champagne_screen_shot
Left: Roscosmos cosmonaut and Mir Expedition 17 flight engineer Elena V. Kondakova with a bottle of champagne to celebrate New Year’s Eve 1994. Right: Video of Kondakova demonstrating the behavior of champagne in weightlessness aboard Mir. Image credits: Courtesy of Roscosmos.

Between 1987 and 1998, 12 Mir expedition crews spent their holidays aboard the ever-expanding orbital outpost. Two of the crews included NASA astronauts, John E. Blaha and David A. Wolf, aboard the Russian space station as part of the Shuttle-Mir Program.  

mir_22_christmas_blaha_1996 mir_24_nasa_6_wolf_w_menorah_1997
Left: Video of Mir Expedition 22 flight engineer and NASA astronaut John E. Blaha’s 1996 Christmas message from Mir. Right: Mir Expedition 24 flight engineer and NASA astronaut David A. Wolf with his menorah and dreidel to celebrate Hanukkah in 1997. 

mir_24_new_years_eve_message_1997 mir_26_new_years_eve_1998
The last two New Year’s Eve messages from Mir. Left: Mir 24 crew of Pavel V. Vinogradov, left, NASA astronaut David A. Wolf, and Anatoli Y. Solovyev in 1997. Right: Mir 26 crew of Sergei V. Avdeyev, left, and Gennadi I. Padalka in 1998. It was the third time Avdeyev rang in the new year in space. Image credits: Courtesy of Roscosmos.

The arrival of Expedition 1 crew members William M. Shepherd of NASA and Yuri P. Gidzenko and Sergei K. Krikalev of Roscosmos aboard the International Space Station on Nov. 2, 2000, marked the beginning of a permanent human presence in space. The first to celebrate Christmas and ring in the new year aboard the fledgling orbiting laboratory, they began a tradition of reading a goodwill message to people back on Earth. Shepherd honored a naval tradition of writing a poem as the first entry of the new year in the ship’s log.

exp_1_christmas_message_2000_still_from_video sts_97_iss_during_departure
Left: Video of Expedition 1 crew members Yuri P. Gidzenko of Roscosmos, left, NASA astronaut William M. Shepherd, and Sergei K. Krikalev of Roscosmos reading their Christmas message in December 2000 – this marked Krikalev’s third holiday season spent in orbit, the first two spent aboard Mir in 1988 and 1991. Right: The space station as it appeared in December 2000.

exp_1_new_year_poem_by_shep
Expedition 1 commander NASA astronaut William M. Shepherd’s poem, written for the New Year’s Day 2001 entry in the space station’s log, in keeping with naval tradition.

christmas_on_iss_screen_shot exp_61_christmas_message_screen_shot
Left: A brief video selection of how some expedition crews celebrated Christmas aboard the space station. Right: From 2019, the Christmas message from the Expedition 61 crew members.

Enjoy the following selection of photographs and videos of international crews as they celebrated Hanukkah and Christmas, and rang in the new year over the past 22 years aboard the space station.

exp_4_christmas_2001 exp_8_christmas_2003 exp_10_happy_new_year_2004
Left: The Expedition 4 crew of Daniel W. Bursch of NASA, left, Yuri I. Onufriyenko of Roscosmos, and Carl E. Walz of NASA poses for its Christmas photo in 2001. Middle: NASA astronaut C. Michael Foale, left, and Aleksandr Y. Kaleri of Roscosmos of Expedition 8 celebrate Christmas in 2003. Right: The Expedition 10 crew of Salizhan S. Sharipov of Roscosmos, left, and NASA astronaut Leroy Chiao festooned for New Year’s Eve 2004.

exp_12_christmas_2005 exp_14_christmas_2005 exp_16_christmas_2007
Left: Valeri I. Tokarev of Roscosmos, left, and NASA astronaut William S. McArthur of Expedition 12 pose with Christmas stockings in 2005. Middle: The Expedition 14 crew of Mikhail V. Tyurin of Roscosmos, left, and NASA astronauts Michael E. Lopez-Alegria and Sunita L. Williams pose wearing Santa hats for Christmas 2006. Right: The Expedition 16 crew of Yuri I. Malenchenko of Roscosmos, left, and NASA astronauts Peggy A. Whitson and Daniel M. Tani, with Christmas stockings and presents in 2007.

exp_18_christmas_meal_2008 exp_22_christmas_2009 exp_26_new_years_eve_2010
Left: The Expedition 18 crew of E. Michael Fincke, left, and Sandra H. Magnus of NASA, and Yuri V. Lonchakov of Roscosmos enjoys its Christmas dinner in 2008. Middle: The five-member Expedition 22 crew of Soichi Noguchi of the Japan Aerospace Exploration Agency, left, Maksim V. Surayev and Oleg V. Kotov of Roscosmos, and Timothy J. Creamer and Jeffrey N. Williams of NASA around the Christmas dinner table in 2009. Right: The Expedition 26 crew of Oleg I. Skripochka of Roscosmos, left, Paolo A. Nespoli of the European Space Agency, Dmitri Y. Kondratyev of Roscosmos, Catherine G. “Cady” Coleman of NASA, Aleksandr Y. Kaleri of Roscosmos, and NASA’s Scott J. Kelly celebrates New Year’s Eve 2010. This marked Kaleri’s third holiday season spent in space.

exp_30_crew_with_santa_claus_hats exp_34_christmas exp_42
Left: The Expedition 30 crew of NASA astronaut Donald R. Pettit, left, Anatoli A. Ivanishin and Oleg D. Kononenko of Roscosmos, André Kuipers of the European Space Agency, NASA’s Daniel C. Burbank, and Anton N. Shkaplerov of Roscosmos pose for their Christmas photo in 2011. Middle: Christmas 2012 photograph of Expedition 34 crew members of NASA astronaut Thomas H. Marshburn, left, Roman Y. Romanenko, Oleg V. Novitski, and Yevgeni I. Tarelkin of Roscosmos, Kevin A. Ford of NASA, and Chris A. Hadfield of the Canadian Space Agency. Right: For Christmas in 2013, the Expedition 42 crew left milk and cookies for Santa and hung their stockings using the Joint Airlock as a makeshift chimney.

exp_50_new_years_eve_2016 exp_54_vande_hei_elf_on_a_shelf_2017 exp_58_christmas_2018
Left: Expedition 50 crew members Sergei N. Ryzhikov of Roscosmos, left, R. Shane Kimbrough of NASA, Andrei I. Borisenko and Oleg V. Novitski of Roscosmos, Peggy A. Whitson of NASA, and Thomas G. Pesquet of the European Space Agency celebrate New Year’s Eve in style in 2016. Middle: Expedition 54 crew member Mark T. Vande Hei of NASA strikes a pose as an Elf on the Shelf for Christmas 2017. Right: The Expedition 58 crew of David Saint-Jacques of the Canadian Space Agency, left, Anne C. McClain of NASA, and Oleg D. Kononenko of Roscosmos inspect their Christmas stockings for presents in 2018.

exp_61_meir_hanukkah_socks_2019 exp_61_christmas_message_2019 exp_61_new_years_eve_2019
Three scenes from the 2019 holiday season aboard the space station. Left: Expedition 61 flight engineer Jessica U. Meir of NASA shows off her Hanukkah-themed socks in the Cupola. Middle: Expedition 61 crew members Andrew R. Morgan, left, and Christina H. Koch of NASA, Luca S. Parmitano of the European Space Agency, and Meir share their Christmas messages. Right: Expedition 61 crew members Koch, left, Morgan, Oleg I. Skripochka of Roscosmos, Meir, Aleksandr A. Skvortsov of Roscosmos, and Parmitano ring in the new year with harmonicas.

holidays_in_space_2021_39_exp_64_holiday_greeting_dec_2020 holidays_in_space_2021_40_exp_64_new_year_message holidays_in_space_2021_41_exp_64_new_years_celebration
Three scenes from the 2020 holiday season aboard the space station. Left: Expedition 64 NASA astronauts Shannon Walker, left, Michael S. Hopkins, Kathleen H. Rubins, and Victor J. Glover and Soichi Noguchi of the Japan Aerospace Exploration Agency (JAXA) record Christmas greetings. Middle: Walker, left, Hopkins, Rubins, Glover, and Noguchi use an inflatable Earth globe as a substitute for the Times Square New Year’s Eve ball “drop” aboard the space station. Right: Expedition 64 crew members Sergei V. Kud-Sverchkov of Roscosmos, left, Hopkins, Walker, Sergei N. Ryzhikov of Roscosmos, Glover, Rubins, and Noguchi welcome in 2021 aboard the space station.

holidays_in_space_2021_42_exp_66_holiday_message_dec_2021 holidays_in_space_2021_43_exp_66_barron_w_presents_dec_2021
Left: During Expedition 66 in 2021, NASA astronauts Mark T. Vande Hei, left, Raja J. Chari, Kayla S. Barron, and Thomas H. Marshburn, and Matthias J. Maurer of the European Space Agency in a still from a video in which they share their thoughts about the holiday season. Right: Barron showing off the presents she wrapped for her six crewmates.

“It is a privilege to have the perspective of seeing so many countries,” said Expedition 66 Commander NASA astronaut Thomas H. Marshburn in a video sharing his thoughts about spending the New Year in space. “We can go from one side [of Earth] to another in just a few minutes and it truly gives us a feeling of unification for all human beings around the world.” “We get to see the sunrise many times a day, so thinking about the fact that people are waking up to a New Year each time we see that sunrise is pretty cool,” added NASA astronaut Raja J. Chari. In a social media post, ESA astronaut Matthias J. Maurer wrote about their New Year’s Eve dinner, and included a time lapse video of the festive meal.

happy_holidays_from_space_2022 Expedition 68 crew members wear holiday garb
Left: Expedition 68 crew members Koichi Wakata of the Japan Aerospace Exploration Agency, left, and NASA astronauts Francisco C. “Frank” Rubio, Josh A. Cassada, and Nicole A. Mann record a holiday greeting from the space station. Right: Expedition 68 crew members wear holiday garb.

In 2022, Expedition 68 crew members NASA astronauts Nicole A. Mann, Josh A. Cassada, and Francisco C. “Frank” Rubio, and JAXA astronaut Koichi Wakata recorded a holiday message for everyone on the ground. They shared some of their personal traditions for the holidays and provided a glimpse of how they spend the holidays aboard the space station. 

Expedition 70 NASA astronaut Jasmin Moghbeli’s felt menorah and dreidel that she used to celebrate Hanukkah
Expedition 70 NASA astronaut Jasmin Moghbeli’s felt menorah and dreidel that she used to celebrate Hanukkah.

Expedition 70 flight engineer NASA astronaut Jasmin Moghbeli’s husband and two little girls made a felt menorah for her to celebrate Hanukkah during her mission. Since astronauts can’t light real candles aboard the space station, Moghbeli pinned felt “lights” for each night of the eight-day holiday. A dreidel spun in weightlessness will continue spinning until it comes in contact with another object, but can’t land on any of its four faces. 

tiangong_space_station_astronauts_livestream shenzhou_13_lunar_new_year_welcoming_year_of_the_tiger_jan_30_2022
Left: To celebrate New Year’s Day 2022, Shenzhou 13 astronauts Ye Guangfu, left, Zhai Zhigang, and Wang Yaping aboard the China Space Station Tiangong hold a live video call. Right: Wang, left, Zhai, and Ye celebrate the Chinese New Year of the Tiger aboard Tiangong.

On Jan. 1, 2022, for the first time Chinese astronauts celebrated a New Year in space. The Shenzhou 13 crew of Zhai Zhigang, Wang Yaping, and Ye Guangfu arrived aboard the China Space Station Tiangong on Oct. 15, 2021, for a six-month mission. On New Year’s Day 2022, they hosted a live video call and interacted with college students at venues in Beijing, Hong Kong, and Macao. For the Feb. 1 start of the Chinese New Year of the Tiger, they decorated the space station and sent best wishes to people on the ground for a happy and prosperous new year.

In January 2023, Shenzhou 15 astronauts Fei Junlong, left, Deng Qingming, and Zhang Lu send New Year’s greetings to Earth from the Tiangong China Space Station.
In January 2023, Shenzhou 15 astronauts Fei Junlong, left, Deng Qingming, and Zhang Lu send New Year’s greetings to Earth from the Tiangong China Space Station.

We hope you enjoyed these stories, photographs, and videos from holiday celebrations in space. This year, a record-tying 10 people from five nations will celebrate the holidays and ring in the new year while serving aboard two space stations – the International Space Station and the Tiangong China Space Station. We wish them all and everyone here on Earth the very best during the holiday season and hope that 2024 will indeed be a Happy New Year!

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Acting Director of NASA’s Johnson Space Center, Steve Koerner. Credit: NASA/Norah Moran NASA has selected Stephen Koerner as acting director of Johnson Space Center. Koerner previously served as Johnson’s deputy director.
      “It is an honor to accept my new role as acting director for Johnson,” Koerner said. “Our employees are key to our nation’s human spaceflight goals. I am continually impressed with what our workforce accomplishes and am proud to be named the leader of such an incredible team dedicated to mission excellence.”
      Koerner previously served as deputy director of NASA Johnson beginning in July 2021, overseeing strategic workforce planning, serving as Designated Agency Safety Health Officer (DASHO), and supporting the Johnson Center Director in mission reviews. Before his appointment to deputy director, Koerner served as director of the Flight Operations Directorate (FOD) for two years. In that role, he was responsible for selecting and protecting astronauts, and for the planning, training, and execution of human space flight and aviation missions. He managed an annual budget of $367 million, 600 civil servants and military personnel, and 2300 contractor personnel.  He oversaw the Astronaut Office, the Flight Director Office, the Mission Control Center, human spaceflight training facilities, and Johnson’s Aviation Operations Division. During this tenure he was also responsible for FOD’s flight readiness of the first commercial human spaceflight mission, ushering in a new era of domestic launch capability and the return of American astronauts launching from American soil. 
      Prior to assuming his position as director of Flight Operations, Koerner served in several senior executive roles, including:
      Johnson Space Center Associate Director from 2018 to 2019 Johnson Space Center Chief Financial Officer (CFO) from 2017 to 2018 Deputy Director of Flight Operations from 2014 to 2017 Deputy Director Mission Operations from 2007 to 2014 Koerner joined Johnson full-time in 1992. He has extensive operations experience including serving as an environmental systems space shuttle flight controller, where he supported 41 space shuttle flights in Mission Control. Since that time, he has served in a series of progressively more responsible positions, including lead for two International Space Station flight control groups, chief of the space station’s Data Systems Flight Control Branch, chief of the Mission Operations Directorate’s Management Integration Office, and as the Mission Operation Directorate’s manager for International Space Station operations.
      Additional special assignments throughout his career include:
      Project manager for Johnson’s Crew Exploration Vehicle Avionics Integration Lab (June 2007 –June 2008) Member of NASA’s Human Exploration Framework Team (April 2010 –October 2010) Member of NASA’s Standing Review Board that provided an independent assessment at life cycle review milestones for the Multi-Purpose Crew Vehicle Program, the Space Launch System Program and the Ground Systems Development and Operations Program (October 2011 – August 2014) Lead of NASA’s Mission Operations Capability Team (October 2015 –April 2017) “Steve has an accomplished career serving human spaceflight. His vision and dedication to the Johnson workforce makes him the perfect person to lead the Johnson team forward as acting director,” said Vanessa Wyche, NASA acting associate administrator. “Steve is an asset to the center and the agency—as both a proven technical expert and a leader.”
      Throughout his career, Koerner has been recognized for outstanding technical achievements and leadership, receiving two Superior Accomplishment Awards, the Outstanding Leadership Medal, the Johnson Space Center Director’s Commendation Award, two group achievement awards, the Exceptional Service Medal, and the Presidential Rank Award.
      Koerner is a native of Stow, Ohio. He earned a bachelor’s degree in mechanical engineering from the University of Akron in Ohio, and a master’s degree in business administration from LeTourneau University in Longview, Texas.
      View the full article
    • By NASA
      4 Min Read Science in Orbit: Results Published on Space Station Research in 2024
      NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions.
      Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.
      Making stronger cement
      NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions.
      European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.NASA Creating Ideal Clusters
      The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices.
      A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. JAXA/ Nagoya City University Controlling Bubble Formation
      NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles.
      High-speed video shows dozens of bubbles growing in microgravity until they collapse.Tengfei Luo Evaluating Cellular Responses to Space
      The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance.
      Fluorescent staining of cells from microgravity (left) and ground control (right).ESA Improving Spatial Awareness
      The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts.
      An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.NeuroLab Monitoring low Earth orbit
      The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities.
      The Mini-EUSO telescope is shown in early assembly.JEM-EUSO Program For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.

      Destiny Doran
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research Results
      Humans In Space
      Space Station Research and Technology
      Space Station Research and Technology Resources

      View the full article
    • By NASA
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.
      Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  
      The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.
      Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Glenn Research Center Humans in Space Technology Technology for Space Travel Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.
      The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 24, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
  • Check out these Videos

×
×
  • Create New...