Jump to content

A Look Through Time with NASA’s Lead Photographer for the James Webb Space Telescope


NASA

Recommended Posts

  • Publishers
2 Min Read

A Look Through Time with NASA’s Lead Photographer for the James Webb Space Telescope

header.jpg?w=1536
This self portrait of Chris Gunn, standing in front of NASA’s James Webb Space Telescope from inside the Goddard Space Flight Center cleanroom, was captured November 10, 2016.
Credits:
NASA/Chris Gunn

Nearly two years ago in the early morning hours of Dec. 25, NASA’s James Webb Space Telescope successfully took flight from the jungle-encircled ELA-3 launch complex at Europe’s Spaceport near Kourou, French Guiana. Following a successful deployment in space, and the precise alignment of the telescope’s mirrors and instruments, Webb began science operations nearly six months after liftoff. As the two-year anniversary of the launch aboard ESA’s (European Space Agency) Ariane 5 rocket approaches, Webb’s lead photographer Chris Gunn has remastered a selection of his favorite images from his career, including one previously unreleased image. 

The opportunity to be the visual spokesperson for a mission of this magnitude was the experience of a lifetime

Chris GUNN

Chris GUNN

NASA/GSFC Lead Photographer for Webb Telescope

 

Since the fall of 2009, Gunn has routinely worked through holidays and weekends, and has spent much of these years on the road, ensuring that the Webb telescope’s progress is visually chronicled and shared with the world. As the various parts and components of Webb began to be assembled and tested throughout the country, Gunn and his camera followed along, capturing the historic development of NASA’s premier space telescope. Though Gunn’s images display the complex nature of the telescope aesthetically, these images also serve as critical engineering bookmarks that the team routinely relied on to document that Webb’s construction was sound before launch.   

Following the launch of Webb, Gunn is now chronicling NASA’s next flagship space telescope, the Nancy Grace Roman Space Telescope.

All images below, credit NASA/Chris Gunn.  

A diverse group of people in white cleanroom suits carefully inspect a single golden faced, hexagonal mirror from the James Webb Space Telescope. Many faces all stare intently, some using flashlights, to examine the mirror surface. Reflected on the surface is the face and intense eye contact from one engineer, and the bright reflection of his flashlight shining directly at the viewer. Behind this engineer, a stainless-steel lens cap used to safely transport the mirror, nearly the size of a human body, rests on scaffolding, still attached by ropes to the crane that lifted it off the mirror moments before. In the background, gray and light blue walls lay behind several other components of Webb scattered around the cleanroom floor. To the right of the frame, a structure made of long overlapping black struts that appear like scaffolding sits on top of a lift table that is meant to safely move the structure up and down.
On Nov. 6, 2012, engineers and technicians inspected one of the first of Webb’s 18 hexagonal mirrors to arrive at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
NASA/Chris Gunn

002-mirror-cover-removal.jpg?w=2048
Inside a clean room at NASA’s Goddard Space Flight Center, on the afternoon of April 25, 2016, the James Webb Space Telescope primary mirrors were uncovered in preparation for installation of its scientific instruments.
NASA/Chris Gunn

Traveling alongside Webb as it grew and evolved, and to be able to add my signature to each photograph captured, was of course an honor, but also an immense challenge. With each image, I wanted to express the awe that I felt seeing Webb integrated right before my eyes, knowing what it was destined to shed new light on the mysteries of the cosmos.

CHRIS GUNN

CHRIS GUNN

NASA/GSFC Lead Photographer for Webb Telescope

002a-wing-folding.jpg?w=1364
NASA’s James Webb Space Telescope is shown with one of its two “wings” folded. Each wing holds three of its primary mirror segments. During this operation in the clean room at NASA Goddard, the telescope was also rotated in preparation for the folding back of the other wing. When Webb launched, both wings were stowed in this position, which enabled the mirror to fit into the launch vehicle. This image was captured July 17, 2016.
NASA/Chris Gunn

003-isim-in-ses.jpg?w=2048
Dressed in a clean room suit, NASA photographer Desiree Stover shines a light on the Space Environment Simulator’s integration frame inside the thermal vacuum chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md. This image was captured Aug. 29, 2013.

004-isim-integration.jpg?w=1526
On May 19, 2016, inside a massive clean room at NASA’s Goddard Space Flight Center, Webb’s Integrated Science Instrument Module was lowered into the Optical Telescope Element.

005-vibe-prep-gsfc.jpg?w=2048
Taken on Nov. 16, 2016, inside NASA Goddard’s largest clean room Webb’s Optical Telescope Element and Integrated Science Instrument Module – together called “OTIS” – are shrouded with a “clean tent” as the team prepared for Webb’s first vibration testing, which took place just outside the clean room.

To capture Webb in its true beauty, I employed the use of specialized lighting rigs, often setting up lights early before the start of work. Johnson Space Center’s Chamber A was an especially tough subject to shoot once Webb was inside. It required remote lights that had to be adjusted perfectly before I boarded a boom lift to make the photograph from seven stories up. It was all worth it, everyone’s hard work – just look at how well our starship is performing

Chris Gunn

Chris Gunn

NASA/GSFC Lead Photographer for Webb Telescope

006-webb-enters-chamber-a-jsc.jpg?w=1638
On June 20, 2017, Webb’s Optical Telescope Element and science instruments were loaded into the historic thermal vacuum testing facility known as “Chamber A” at NASA’s Johnson Space Center in Houston.

007-first-move-to-horiz.jpg?w=2048
On Sept. 16, 2021, Webb was ready to be shipped to the launch site in French Guiana. Before Webb could be lifted into its shipping container, engineers and technicians at Northrop Grumman in Redondo Beach, California, performed this first horizontal tilt of the fully assembled observatory.
008-last-observatory-lift-fg-.jpg?w=2048
This never-before-seen image shows engineers and technicians disassembling ground hardware after completing one of the final lifts of the Webb observatory, before being placed atop ESA’s (European Space Agency) Ariane 5 rocket in French Guiana. This image was taken Nov. 11, 2021.

009-webb-launch.jpg?w=1638
“Liftoff – from a tropical rainforest to the edge of time itself, James Webb begins a voyage back to the birth of the universe.” Arianespace’s Ariane 5 rocket launched with NASA’s James Webb Space Telescope aboard, Dec. 25, 2021, from the ELA-3 Launch Zone of Europe’s Spaceport at the Guiana Space Centre in Kourou, French Guiana.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Right click the images in this article to open a version in a new tab/window that can be zoomed or saved.

Media Contacts

Thaddeus Cesari Thaddeus.cesari@nasa.gov, Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Related Information

Webb Observatory

More Webb News

More Webb Images

Webb Mission Page

Share

Details

Last Updated
Dec 22, 2023
Editor
Stephen Sabia

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Diana Oglesby’s love for NASA began long before she started working for the agency. A native of Decatur, Texas, Oglesby knew at the age of eight that she would make NASA her future destination. That dream became a reality when Oglesby joined the agency, first as an intern and later as a NASA full-time employee, marking the beginning of a career that would span over two decades.  


      From left, Richard Jones, CCP (Commercial Crew Program) deputy program manager at NASA’s Johnson Space Center in Houston; Steve Stich, program manager for CCP; Dana Hutcherson, CCP deputy program manager at NASA’s Kennedy Space Center in Florida; and Diana Oglesby, director, Strategic Integration and Management Division, Space Operations Mission Directorate, pose with the agency’s SpaceX Crew-9 mission flag near the countdown clock at the NASA News Center at the Kennedy on Tuesday, Sept. 24, 2024.NASA/Cory S Huston Oglesby currently serves as director of the Strategic Integration and Management Division within NASA’s Space Operations Mission Directorate at NASA Headquarters. The division plays a key role in ensuring the effectiveness and efficiency of space operations, providing essential business support such as programmatic integration, strategic planning, information technology and cybersecurity leadership, stakeholder outreach, and administrative services.  

      Before her current role, Oglesby led the business management function for NASA’s Commercial Crew Program at NASA’s Kennedy Space Center in Florida. She had a front-row seat to history during NASA’s SpaceX Demo-2 mission, which successfully launched astronauts to the International Space Station in the first commercially built and operated American rocket and spacecraft, marking a significant milestone in NASA’s space exploration efforts.  

      “It was an honor of a lifetime,” she says, reflecting on her role in this historic achievement.

      Oglesby’s ability to foster teamwork and genuine care for others has been a hallmark of her career, whether serving in NASA’s Commercial Crew Program or now guiding the Strategic Integration and Management Division. 

      While reflecting on her new role as division director, Oglesby is most excited about the people. As someone who thrives on diverse activities and complex challenges, she looks forward to the strategic aspects of her role and the opportunity to lead a dynamic team helping to shape NASA’s future. 
      The future is bright. We are actively building the future now with each choice as part of the agency's strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.
      Diana Oglesby
      Director, Strategic Integration and Management Division, Space Operations Mission Directorate 
      “The future is bright,” said Oglesby. “We are actively building the future now with each choice as part of the agency’s strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.” 

      While Oglesby is deeply committed to her work, she also believes in “work-life harmony” rather than a work-life balance, by giving her attention to the sphere of life she is currently in at that moment in time. She remains ever focused on harmonizing between her NASA duties and her life outside of work, including her three children. Oglesby enjoys spending time with her family, baking, crafting, and participating in her local church and various causes to support community needs.   

      Known for her positive energy, passion, and innovation, Oglesby always seeks ways to improve systems and make a difference in whatever project she is tackling. Her attention to detail and problem-solving approach makes her an invaluable leader at NASA. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 


      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Space Operations Mission Directorate Strategic Integration and Management Division Explore More
      4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 2 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 weeks ago 3 min read Commercial Services User Group (CSUG)
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      This photo shows the Optical Telescope Assembly for NASA’s Nancy Grace Roman Space Telescope, which was recently delivered to the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md.NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and supporting structures and electronics. The assembly was delivered Nov. 7. to the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where the observatory is being built.
      The telescope will focus cosmic light and send it to Roman’s instruments, revealing many billions of objects strewn throughout space and time. Using the mission’s Wide Field Instrument, a 300-megapixel infrared camera, astronomers will survey the cosmos all the way from the outskirts of our solar system toward the edge of the observable universe. Scientists will use Roman’s Coronagraph Instrument to test new technologies for dimming host stars to image planets and dusty disks around them in far better detail than ever before.
      “We have a top-notch telescope that’s well aligned and has great optical performance at the cold temperatures it will see in space,” said Bente Eegholm, optics lead for Roman’s Optical Telescope Assembly at NASA Goddard. “I am now looking forward to the next phase where the telescope and instruments will be put together to form the Roman observatory.”
      In this photo, optical engineer Bente Eegholm inspects the surface of the primary mirror for NASA’s Nancy Grace Roman Space Telescope. This 7.9-foot (2.4-meter) mirror is a major component of the Optical Telescope Assembly, which also contains nine additional mirrors and supporting structures and electronics.NASA/Chris Gunn Designed and built by L3Harris Technologies in Rochester, New York, the assembly incorporates key optics (including the primary mirror) that were made available to NASA by the National Reconnaissance Office. The team at L3Harris then reshaped the mirror and built upon the inherited hardware to ensure it would meet Roman’s specifications for expansive, sensitive infrared observations.
      “The telescope will be the foundation of all of the science Roman will do, so its design and performance are among the largest factors in the mission’s survey capability,” said Josh Abel, lead Optical Telescope Assembly systems engineer at NASA Goddard.
      The team at Goddard worked closely with L3Harris to ensure these stringent requirements were met and that the telescope assembly will integrate smoothly into the rest of the Roman observatory.
      The assembly’s design and performance will largely determine the quality of the mission’s results, so the manufacturing and testing processes were extremely rigorous. Each optical component was tested individually prior to being assembled and assessed together earlier this year. The tests helped ensure that the alignment of the telescope’s mirrors will change as expected when the telescope reaches its operating temperature in space.
      Then, the telescope was put through tests simulating the extreme shaking and intense sound waves associated with launch. Engineers also made sure that tiny components called actuators, which will adjust some of the mirrors in space, move as predicted. And the team measured gases released from the assembly as it transitioned from normal air pressure to a vacuum –– the same phenomenon that has led astronauts to report that space smells gunpowdery or metallic. If not carefully controlled, these gases could contaminate the telescope or instruments.
      Upon arrival at NASA’s Goddard Space Flight Center, the Optical Telescope Assembly for the agency’s Nancy Grace Roman Space Telescope was lifted out of the shipping fixture and placed with other mission hardware in Goddard’s largest clean room. Now, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.NASA/Chris Gunn Finally, the telescope underwent a month-long thermal vacuum test to ensure it will withstand the temperature and pressure environment of space. The team closely monitored it during cold operating conditions to ensure the telescope’s temperature will remain constant to within a fraction of a degree. Holding the temperature constant allows the telescope to remain in stable focus, making Roman’s high-resolution images consistently sharp. Nearly 100 heaters on the telescope will help keep all parts of it at a very stable temperature.
      “It is very difficult to design and build a system to hold temperatures to such a tight stability, and the telescope performed exceptionally,” said Christine Cottingham, thermal lead for Roman’s Optical Telescope Assembly at NASA Goddard.
      Now that the assembly has arrived at Goddard, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.
      With this milestone, Roman remains on track for launch by May 2027.
      “Congratulations to the team on this stellar accomplishment!” said J. Scott Smith, the assembly’s telescope manager at NASA Goddard. “The completion of the telescope marks the end of an epoch and incredible journey for this team, and yet only a chapter in building Roman. The team’s efforts have advanced technology and ignited the imaginations of those who dream of exploring the stars.”
      Virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      claire.andreoli@nasa.gov
      301-286-1940
      Explore More
      3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 7 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 2 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
      Article 3 months ago Share
      Details
      Last Updated Nov 14, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Exoplanets Goddard Space Flight Center The Universe View the full article
    • By NASA
      Continuing his engagement to deepen international collaboration and promote the peaceful use of space, NASA Administrator Bill Nelson will travel to Lima on Wednesday.
      Nelson will meet with Maj. Gen. Roberto Melgar Sheen, director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Thursday, Nov. 14, and sign a non-binding memorandum of understanding to enhance space cooperation. The memorandum of understanding between NASA and CONIDA will include safety training, a joint feasibility study for a potential sounding rockets campaign, and technical assistance for CONIDA on sounding rocket launches. 
      Nelson will discuss the importance of international partnerships and collaboration in space and celebrate Peru’s signing of the Artemis Accords earlier this year.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Meira Bernstein
      Headquarters, Washington
      202-615-1747
      meira.b.bernstein@nasa.gov
      Share
      Details
      Last Updated Nov 13, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Bill Nelson View the full article
    • By NASA
      5 Min Read Wearable Tech for Space Station Research
      A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
      Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
      Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
      Warm to the core
      Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
      A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
      Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
      NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
      Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
      NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
      These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
      (Not) waiting to exhale
      Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
      One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
      EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
      ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
      ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
      Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
      The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Space Station Technology Demonstration
      Space Station Research and Technology
      Station Science 101: Human Research
      View the full article
  • Check out these Videos

×
×
  • Create New...